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Abstract: Deviations in hydrologic processes due to wildfire can alter streamflows across the hydrograph, spanning peak 
flows to low flows. Fire-enhanced changes in hydrologic processes, including infiltration, interception, and 
evapotranspiration, and the resulting streamflow responses can affect water supplies, through effects on the quantity, 
quality, and timing of water availability. Post-fire shifts in hydrologic processes can also alter the timing and magnitude 
of floods and debris flows. The duration of hydrologic deviations from a pre-fire condition or function, sometimes termed 
hydrologic recovery, is a critical concern for land, water, and emergency managers. We reviewed and summarized 
terminology and approaches for defining and assessing hydrologic recovery after wildfire, focusing on statistical and 
functional definitions. We critically examined advantages and drawbacks of current recovery assessment methods, outline 
challenges to determining recovery, and call attention to selected opportunities for advancement of post-fire hydrologic 
recovery assessment. Selected challenges included hydroclimatic variability, post-fire land management, and spatial and 
temporal variability. The most promising opportunities for advancing assessment of hydrologic recovery include: (1) 
combining statistical and functional recovery approaches, (2) using a greater diversity of post-fire observations 
complemented with hydrologic modeling, and (3) defining optimal assemblages of recovery metrics and criteria for 
common hydrologic concerns and regions. 
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INTRODUCTION 

 
Wildfire can have numerous effects on hydrological 

processes, water supply, and water-related hazards. Post-fire 
water-related hazards include increased risk of flash floods 
(Conedera et al., 2003; Moody and Martin, 2001a; Moody and 
Martin, 2001b; Tryhorn et al., 2008) and debris flows (e.g., 
McGuire et al., 2017; Nyman et al., 2011; Staley et al., 2013; 
Thomas et al., 2021). Fire can also lead to hydrologically driven 
alterations of water supply through shifts in the timing and 
magnitude of streamflow (Beyene et al., 2021; Hallema et al., 
2018; Kinoshita and Hogue, 2015; Wine et al., 2018). Water 
quality can also be altered by wildland fire (e.g., Harper et al., 
2018; Martin, 2016; Murphy et al., 2018; Nunes et al., 2018a; 
Rhoades et al., 2019; Roces-Díaz et al., 2022; Rust et al., 2018), 
including through increases in nutrients (Ferreira et al., 2016; 
Hosseini et al., 2017; Serpa et al., 2020) and suspended sediment 
(e.g., Cerdà and Lasanta, 2005; Prats et al., 2016; Wittenberg and 
Inbar, 2009). While the effects of fire on water quantity and 
quality are often substantial, fire effects on hydrologic functions 
and aquatic ecosystems are not always detrimental and often 
provide a necessary ecosystem service (Pausas and Keeley, 
2019; Roces-Díaz et al., 2022; Warren et al., 2022). For example 
numerous studies have shown increases in water yield following 
fire (e.g., Hallema et al., 2018; Saxe et al., 2018; Shakesby and 
Doerr, 2006; Williams et al., 2022) likely as a result of reduced 
transpiration (Collar et al., 2021; Kinoshita and Hogue, 2015) 
that could be viewed as beneficial from a water supply 
perspective. Indeed, recent reviews of ecosystem services have 
documented both positive and negative changes in ecosystem 

services after fire (Roces-Díaz et al., 2022; Vukomanovic and 
Steelman, 2019). 

Fire effects on streamflow and water supply are generally 
driven by substantial post-fire alterations in vegetation, surface 
cover, soil properties, and hydrologic processes. Post-fire 
changes in vegetation and surface cover conditions include can-
opy (e.g., Stoof et al., 2012) and litter/duff (e.g., Ebel, 2013b) 
interception, vegetation type (e.g., Cerdà et al., 2021), and 
ground cover (e.g., Cerdà and Doerr, 2008). These vegetation 
and ground cover shifts can result in more precipitation reaching 
the land surface (Mitsudera et al., 1984), alter snow accumula-
tion and ablation (Gleason et al., 2013; Moeser et al., 2020), and 
reduce transpiration (e.g., Collar et al., 2021; Poon and 
Kinoshita, 2018; Wilder and Kinoshita, 2022), thus potentially 
increasing groundwater recharge (e.g., Cardenas and Kanarek, 
2014; Ebel, 2013a). Combustion of vegetation and surface fuels 
can result in the generation of ash and char layers that can sub-
stantially alter surface water storage, infiltration, and runoff 
chemistry (e.g., Bodí et al., 2014; Pereira et al., 2015; Pereira et 
al., 2012). Soil hydraulic properties altered by fire include hy-
draulic conductivity (e.g., Ebel, 2019), sorptivity (e.g., Moody et 
al., 2009), soil-water repellency (e.g., Imeson et al., 1992), and 
soil-water retention (Stoof et al., 2010), which can alter infiltra-
tion rates (e.g., Cerdà, 1998; Plaza-Álvarez et al., 2019). Soil 
physical properties — including bulk density (e.g., Stoof et al., 
2010), organic matter content (e.g., González-Pérez et al., 2004), 
soil particle size distribution (e.g., Ulery and Graham, 1993), and 
aggregate stability (e.g., Mataix-Solera and Doerr, 2004) — can 
also be changed by wildfire and can affect water storage, infil-
tration, and erodibility. The magnitude of the fire effects on the 
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aforementioned system properties and processes can be ampli-
fied or dampened by numerous physical, biological, pyrologic, 
and anthropogenic factors, leading to uncertainty in predicting 
post-fire effects. For example, some factors that can modify the 
magnitude of post-fire effects include soil type (e.g., Mataix-
Solera and Doerr, 2004), vegetation type (e.g., Cerdà et al., 
2021), hydroclimatology (e.g., Florsheim et al., 2017), burn se-
verity (e.g., González-Pelayo et al., 2006), and post-fire manage-
ment activities (e.g., Barroso and Vaverková, 2020; Francos et 
al., 2020; Wittenberg et al., 2020). 

The timescale and magnitude of fire effects on hydrologic 
processes and quantitative assessment of recovery are of critical 
interest to aquatic ecologists, forest and emergency managers, 
and water supply agencies. It is typically assumed there is a  
detectable increase or reduction in vegetation conditions, soil 
properties, and hydrologic fluxes (e.g., evapotranspiration, 
streamflow) after fire, relative to the unburned condition, and re-
covery is represented by a return towards a pre-fire state (e.g., 
Cerdà, 1998; Kinoshita and Hogue, 2011; Rulli et al., 2006; 
Wagenbrenner et al., 2021). The period between the wildfire and 
hydrologic system recovery is sometimes termed the “window of 
disturbance” (Prosser and Williams, 1998). Numerous studies in 
the fire science community have examined hydrologic recovery 
following wildfire. Vegetation recovery has been linked to re-
covery in streamflow (Brown, 1972; Heath et al., 2014; 
Kinoshita and Hogue, 2011; Kuczera, 1987; Nolan et al., 2015; 
Shin et al., 2013), infiltration (Cerda et al., 1995), erosion (Inbar 
et al., 1998; Swanson, 1981; Wittenberg and Inbar, 2009), and 
peak flows (Bolin and Ward., 1987; Kunze and Stednick, 2006). 
The recovery of soil-water repellency to unburned levels has also 
been connected to recovery of infiltration (Robichaud, 2000; 
Shakesby et al., 1993) and erosion (Robichaud et al., 2016; 
Tessler et al., 2012). Other factors including macropore flow 
(Nyman et al., 2014) and soil structure (Cerda et al., 1995; 
Mataix-Solera and Doerr, 2004) have been noted to affect the 
recovery of infiltration, runoff generation, and streamflow after 
fire. Post-fire mitigation methods can also affect hydrologic re-
covery times, adding more complexity (Girona-García et al., 
2021; Neris et al., 2016; Prats et al., 2014; Zema, 2021). 

While the collective efforts of the fire science community 
have provided insight into the many factors that can promote or 
inhibit hydrologic recovery, we lack a systematic understanding 
of recovery processes necessary to predict the magnitude and  
duration of fire effects on hydrologic responses. Terminology  
differences and lack of consistency in how recovery is assessed 
are primary barriers to synthesizing hydrologic recovery  
between geographic areas and types of hydrologic response 
(Wagenbrenner et al., 2021). The goal of our work was to exam-
ine terminology used to describe hydrologic recovery assessment 
and build a flexible framework for consistent assessment of  
hydrologic recovery after wildfire. The study of hydrologic  
recovery after wildfire includes (1) selecting an approach defin-
ing what type of recovery is of interest, such as a return to a pre-
fire condition or a necessary level of hydrologic function, (2) de-
fining metrics of interest that quantitatively measure the system 
condition or response, (3) choosing criteria that quantitatively 
determine whether recovery has been achieved, (4) identifying a 
recovery trajectory that defines the shape of the system response 
or condition with time since fire, and (5) estimating the recovery 
timescale that is the period from the wildfire until hydrologic re-
covery has been achieved. Thus, in this work, we: 

• examined concepts and definitions of approaches, metrics, 
criteria, trajectories, and timescales to assess hydrologic 
recovery after fire, 

• summarized uses of these definitions in the post-fire 
hydrologic literature and presented a framework for 
assessing recovery, 

• considered advantages and drawbacks of the various 
approaches and elements of the recovery framework, 

• discussed challenges associated with recovery timescales 
and recovery trajectories (forms), and 

• highlighted opportunities for advancing assessments of 
post-fire hydrologic recovery. 

We provide examples across multiple fire-affected systems 
and hydrologic processes to illustrate the broad applicability of 
the recovery terminology and proposed framework. 
 
BACKGROUND AND FOUNDATION FOR NEW 
HYDROLOGIC RECOVERY ASSESSMENT 
FRAMEWORK 

 
Assessing post-fire hydrologic recovery requires a clearly 

defined approach for selecting the most important hydrologic 
variable of concern (e.g., water supply, water quality, debris flow 
hazard) and objectively quantifying recovery. The approach for 
assessing hydrologic recovery has generally involved either an 
assessment of whether (1) the hydrologic variable of concern has 
returned to a statistically indistinguishable condition relative to 
a pre-fire state or (2) a hydrologic function of interest has  
been restored (Table 1). We summarize these two approaches 
below. 

 
Recovery assessment approach: Statistical 

 
In the statistical recovery approach, central tendencies, 

variances, statistical distributions, or quantitative statistical 
relations (e.g., linear regression) are used to define the pre-fire 
and post-fire states and sequential temporal comparisons are 
used to assess a return to the pre-fire state or condition (Cerdà, 
1998; Ebel and Martin, 2017; Kinoshita and Hogue, 2015; 
Robichaud et al., 2016; Wagenbrenner et al., 2021). The 
statistical recovery definition (Figure 1A) is the most broadly 
used definition in the hydrologic literature. For example, Larson-
Nash et al. (2018) assessed recovery by determining when the 
ratio of infiltration on burned sites and unburned sites had 
returned to one. Similarly, post-fire evapotranspiration recovery 
was also assessed by comparing pre- and post-fire ratios, but to 
an 80% rather than 100% recovery criterion (Collar et al., 2021). 
Wagenbrenner et al. (2021) reviewed this approach and 
recommended statistical recovery should be considered achieved 
when the hydrologic parameter of concern returned to within the 
95% confidence interval of the pre-fire hydrologic response 
(Figure 1A). 

Statistical tests comparing burned and unburned infiltration 
data and derived soil-hydraulic properties, such as the non-
parametric Kruskal-Wallis test (Kruskal and Wallis, 1952), have 
also been used to assess recovery between repeated years after 
fire (Ebel et al., 2022). Similar methods for assessing statistical 
recovery of hydrologic processes include statistical analyses of 
variance (e.g., Williams et al., 2016a) and mixed-effects 
statistical models (e.g., Robichaud et al., 2016). Linear 
regression has also been used to observe statistical recovery of 
infiltration and derived soil-hydraulic properties across burn 
severity (Ebel et al., 2018). While many different statistical 
approaches have been used to assess hydrologic recovery, there 
are no currently agreed upon baseline statistical methods that 
serve as benchmarks for assessing whether a site has recovered, 
which has hindered cross-study comparisons. 
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Fig. 1. Examples of the (A) statistical and (B) functional approaches for hydrologic recovery assessment following wildfire. CI = confidence 
interval. 

 
Table 1. Definitions of post-fire recovery approach, metric, criteria, trajectory, and timescale for hydrologic recovery following wildfire. 
 
Recovery term Definition Reference(s) Example 

Approach 

Selecting the most important  
hydrologic concern (e.g., water supply,  
water quality, debris flow hazard) and  
then deciding what constitutes  
recovery This work 

Statistical recovery (return to pre-fire condition); 
Functional recovery (return to required  
hydrologic function) 

Metric 

Numerical value that captures some  
salient hydrologic property, process,  
condition, flux, or state 

Rathburn et al. (2018);  
Wagenbrenner et al. 
(2021) 

Runoff ratio, total runoff/total precipitation; Q90, 
the discharge with 90% exceedance  
probability estimated from a flow duration curve 

Criteria 

Quantitative analysis or comparison of a 
recovery metric against some standard or 
endpoint to decide if recovery has been 
achieved Hughes et al. (1990) 

Within 95% confidence interval of pre-fire data; 
annual watershed yield sufficient for water  
supply demand 

Trajectory 

Temporal form of the hydrologic  
property, state, flux, or function with 
elapsed time since fire Minshall et al. (1997) 

Linear recovery form; sigmoidal/logistic  
recovery form; humped recovery form 

Timescale 
Duration between the fire and the  
attainment of a selected recovery metric  Lamb et al. (2011) 

Peak flow recovery to pre-fire levels (for similar 
magnitude precipitation) in 2-3 years after fire 

 
Recovery assessment approach: Functional 

 
Functional recovery assessment is an alternative approach to 

evaluating post-fire hydrologic recovery, which relies on re-es-
tablishment, or documentation of no loss, of hydrologic function 
following a fire rather than a statistical return to an unburned 
condition (Figure 1B). The concept of ecosystem services  
provides a framework to assess altered hydrologic function  
following wildfire and prescribed fire (e.g., Harper et al., 2018; 
Nunes et al., 2018b; Pausas and Keeley, 2019; Pereira et al., 
2021; Robinne et al., 2020; Roces-Díaz et al., 2022). Recent  
efforts examining the effects of fire on ecosystem services 
(Roces-Díaz et al., 2022) have used classifications from the 
Common International Classification of Ecosystem Services 
(Haines-Young and Potschin-Young, 2018; Haines-Young and 
Potschin, 2018). Within this classification system, water pro-
vides many provisioning and regulating ecosystem services. Pro-
visioning hydrologic ecosystem services include supplying suf-
ficient quantity and quality of water for various uses (e.g., 

Brauman et al., 2007). Comparatively, regulating ecosystem ser-
vices include those processes that benefit ecosystems, such as 
forests dampening hydrologic responses to rainfall, reducing 
flood magnitudes and the probability of debris flow initiation, 
and purification of source water supplies (e.g., Ebel, 2020; 
Roces-Díaz et al., 2022). 

Assessing post-fire recovery of hydrologic function requires 
a definition of function and quantification of whether that func-
tion or ecosystem service is still provided following fire disturb-
ance. As with the statistical definition of recovery, the functional 
definition also requires defining metrics to assess functional  
adequacy across a suite of ecosystem services or hydrologic  
responses. These metrics can be directly measured, such as dis-
charge (e.g., Cosandey et al., 2005; Niemeyer et al., 2020), soil 
moisture (Ebel et al., 2012; Kean et al., 2011; Leighton-Boyce et 
al., 2005) and infiltration (e.g., Cerdà, 1998; Ebel et al., 2022; 
Shakesby et al., 1993), or indirectly estimated metrics, such as 
Budyko water balances (e.g., Hampton and Basu, 2022) or re-
motely sensed indices. 
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Recovery metrics 
 
Quantitatively assessing post-fire hydrologic recovery using 

either the statistical or functional approach requires a numerical 
value that captures a salient hydrologic property, condition, flux, 
or state. The term “recovery metric” has been used (Hampton 
and Basu, 2022; Rathburn et al., 2018; Wagenbrenner et al., 
2021) to describe the quantitative (i.e., continuous numerical 
scale, not categorical) measurement for which recovery was 
assessed, typically relating to watershed discharge, peak flow, 
low flow, total sediment delivery, evapotranspiration, or 
infiltration (Table 1). Common metrics used for post-fire system 
properties or hydrologic response are summarized in Table 1 of 
Wagenbrenner et al. (2021) and include runoff ratio, low flow, 
snow melt rate, suspended sediment load, flood peak, slope of 
rising or falling hydrograph limbs, time of peak streamflow, 
median streamflow, and the slope of the flow duration curve. 
Often, multiple aspects of a single measured variable, such as 
streamflow, are used as recovery metrics such as the 90th 
percentile exceedance discharge (or low flow) and the total 
annual flow normalized by basin area. In some studies, a single 
hydrologic recovery metric has been used (e.g., Aronica et al., 
2002; Bart and Hope, 2010; Cole et al., 2020; Shakesby et al., 
1993) whereas others have used multiple metrics (e.g., Cerdà and 
Lasanta, 2005; García-Comendador et al., 2017; Kinoshita and 
Hogue, 2011; Kinoshita and Hogue, 2015; Prats et al., 2016). 
Depending on the hydrologic parameter of concern (e.g., water 
supply, water-related hazards, ecological conditions) these 
metrics may be calculated at different timescales, such as sub-
daily, monthly, or annually (Wagenbrenner et al., 2021). For 
example, peak flows for hazard concerns are often calculated on 
a sub-daily event basis whereas annual watershed yield (i.e., total 
annual streamflow) is often used to assess recovery for water 
supply purposes. 

 
Recovery criteria 

 
Determining whether post-fire hydrologic recovery has been 

achieved requires recovery criteria. Defining recovery criteria 
(Table 1) typically involves a quantitative analysis or compari-
son of a recovery metric against some standard (Hughes et al., 
1990). Recovery criteria are typically defined using either the 
statistical (95% confidence interval of pre-fire metrics) or  
functional (return to pre-fire function) approaches to defining  
recovery, but multiple criteria could be applied using both  
approaches. Recovery criteria for the statistical recovery ap-
proach often involve a return of a measured metric to the central 
tendencies and statistical distributions that characterized the  
pre-fire system, such as the 95% confidence interval of the pre-
fire data (Wagenbrenner et al., 2021) used for recovery metrics 
of runoff ratio, slope of the flow duration curve, fraction of the 
year with no flow, and the discharge with 10% and 90% exceed-
ance probabilities estimated from a flow duration curve. Return 
of the hydrologic metric to a fraction of the pre-fire level is also 
used, such as a return to 80% (Collar et al., 2021) or 90% 
(Hampton and Basu, 2022) of the pre-fire recovery metric. The 
recovery criteria for the functional recovery approach signifies 
processes returning to a typical pre-fire hydrologic function, 
such as the transition from infiltration-excess hillslope runoff 
generation after the fire back to the pre-fire condition of subsur-
face storm flow hillslope runoff generation (e.g., Ebel, 2020). 
Functional approach criteria can also relate to the provision of an 
ecosystem service, such as supplying the annual water demand 
of a community (i.e., a minimum total annual discharge) (Table 
1). Assessment of recovery criteria can be complicated by post-

fire runoff and erosion mitigation efforts that may or may not 
accelerate the return of hydrologic function to pre-fire levels. 

 
Recovery trajectories 

 
The temporal evolution of the recovery of hydrologic pro-

cesses after fire may take various pathways or trajectories de-
pending on many interconnected, complex factors. The recovery 
trajectory (after Minshall et al., 1997) can be defined as the tem-
poral form or shape of the system property (e.g., soil hydraulic 
conductivity), state (e.g., soil water content), flux (e.g., stream-
flow), condition (e.g., vegetation characteristics, channel form), 
or function (e.g., water provision) with elapsed time since fire 
(Figure 2, Table 1). Knowledge of the range of possible shapes 
describing the potential recovery trajectory with time since fire 
is essential to developing hypotheses and statistical relations that 
quantify temporal variation and trends in the post-fire hydrologic 
response. Several shapes of recovery trajectories have been hy-
pothesized, including sigmoidal or logistic (e.g., Ebel and 
Martin, 2017), linear (e.g., Canfield et al., 2005), humped (e.g., 
Nolan et al., 2015, see Figure 2), cyclical or multi-humped (e.g., 
Cerdá and Doerr, 2005, see Figure 2), and exponential (e.g., 
Vertessy et al., 2001). Additionally, other shapes are possible for 
recovery trajectories. The relative sign (i.e., greater or less than 
pre-fire values) and form of the trajectory can vary between hy-
drologic response type (Cerdá and Doerr, 2005) and burn  
severity (Nolan et al., 2015). 

 

 
 

Fig. 2. Different potential hydrologic recovery trajectories following 
wildfire. 

 
Recovery trajectories have often been conceptualized as mon-

otonic in time; however, numerous exceptions have been ob-
served. For example, seasonal variations in soil moisture, poten-
tially linked with soil-water repellency, influenced infiltration 
recovery trajectories after fires in the Mediterranean climates of 
Spain and California, which led to cyclical or multi-humped 
(Figure 2) trajectories that varied seasonally (Cerdá and Doerr, 
2005; Ferreira et al., 2000; Leighton-Boyce et al., 2005; Perkins 
et al., 2022). U-shaped post-fire infiltration recovery trajectories 
(Figure 2) were observed after the 2003 Hot Creek Fire in Idaho 
for steep (60%) slopes, in contrast to more linear infiltration re-
covery trajectories for gentler (20%) slopes (Larson-Nash et al., 
2018). After a wildfire in eastern Spain, surface runoff followed 



Brian A. Ebel, Joseph W. Wagenbrenner, Alicia M. Kinoshita, Kevin D. Bladon 

392 

a non-monotonic (multi-humped) recovery trajectory in an area 
with tree species overstory, whereas shrub and herbaceous veg-
etation overstory followed a sigmoidal recovery trajectory 
(Cerdá and Doerr, 2005). In some environments, such as cold 
regions where permafrost plays an important hydrologic role, the 
effects of fire can have a delayed, slow onset; in these environ-
ments a decade or longer can pass before fire effects on soil-hy-
draulic properties and subsurface hydrologic conditions are evi-
dent, followed by decades to recover to a long-unburned condi-
tion (Ebel et al., 2019; Rey et al., 2020). This complexity in re-
covery trajectories creates substantial challenges for predicting 
the effects of wildfires, especially in regions where the wildfire 
regime is changing rapidly. 

In part, assessment of post-fire recovery trajectories could be 
affected by the temporal resolution of the data. For example, in 
Figure 2 we show a hypothetical situation where annual data in-
dicate a possible linear recovery trajectory (square symbols) 
whereas sub-annual data show a multi-humped trajectory (tem-
poral resolution effect line), revealing seasonal variations in the 
hydrologic parameter of concern. In some cases, temporal reso-
lution may result in the appearance of abrupt recovery (or regres-
sion) of the observed metric (Ebel, 2020; Hoch et al., 2021), 
whereas a finer timescale of measurement might reveal more nu-
anced temporal trends (Thomas et al., 2021). As with recovery 
timescales, hydroclimatic variability, such as drought or extreme 
precipitation events, can alter the recovery trajectory and prevent 
comparisons with typical post-fire recovery trajectories that may 
be hypothesized for specific regions, vegetation types, or hydro-
logic processes (Figure 2). The spatial scale of assessment can 
also affect the recovery timescale (e.g., Ferreira et al., 2005; 
Prats et al., 2016; Wilson et al., 2018). 

 
Recovery timescales 

 
Knowledge of the duration of fire effects on the hydrologic 

response is important for prioritizing post-fire forest manage-
ment activities and informing water and emergency management 
decisions. The cumulative effects of multiple activities in a  
watershed may lead to greater impacts on a given hydrologic re-
sponse than any single activity (MacDonald, 2000) and under-
standing the post-fire recovery trajectory of a given hydrologic 
response would help describe the possible combined effects of 
the fire and another proposed activity on that response. The du-
ration of fire effects, or recovery timescale (after Lamb et al., 
2011), can be defined as the time between the occurrence of fire 
and the attainment of a value chosen to represent recovery (i.e., 
the recovery criteria; Figure 3, Table 1). However, recovery 
timescales of fire effects on hydrologic processes have been 
noted to vary substantially between regions (Cerdà and 
Robichaud, 2009). For example, various post-fire recovery time-
scales for infiltration have been observed such as <1 year 
(Nyman et al., 2014), 4 years (Cerdà, 1998; Ebel et al., 2022),  
4–5 years (Ebel, 2020), 6 years (Robichaud et al., 2016), 7–8 
years (Shakesby et al., 1993), and >10 years (Canfield et al., 
2005). These vast differences in post-fire infiltration recovery 
timescales likely occur due to complex and differing effects of 
wildfire on the various factors contributing to infiltration recov-
ery, such as macropore regeneration (Nyman et al., 2014), vege-
tation regrowth and ground cover (Canfield et al., 2005; Cerdà, 
1998; Ebel, 2020; Robichaud et al., 2016), soil structure (Ebel et 
al., 2022), and soil water repellency (Shakesby et al., 1993), 
which vary by watershed conditions and location. The individual 
soil-hydraulic properties contributing to infiltration can have  
different recovery timescales, such as the shorter recovery time-
scale for sorptivity (≤2 years) and longer recovery timescale for 

hydraulic conductivity (≥4 years) (Ebel, 2020; Ebel et al., 2022). 
Streamflow recovery timescales can diverge substantially 

from infiltration recovery timescales because of the additional 
dependence on precipitation, evapotranspiration, groundwater 
recharge, and baseflow. Long groundwater residence times may 
delay the recovery timescales compared to hydrologic systems 
where streamflow generation is dominated by shorter timescale 
mechanisms such as shallow subsurface flow.  Streamflow re-
covery timescales can also vary substantially. For example, there 
have been observations of wildfire effects on mean annual 
streamflow persisting for 8–12 years (Nolan et al., 2015), <10 
years (Brown, 1972), >30 years (Webb and Jarrett, 2013), and 
>40 years (Niemeyer et al., 2020). Comparatively, peak stream-
flow recovery timescales are generally shorter, such as the 2 to 
3-year timescales observed in the western USA in several studies 
(e.g., Bolin and Ward., 1987; Kunze and Stednick, 2006; Moody 
and Martin, 2001a). 

 

 
Fig. 3. Recovery timescale example for different hydrologic recov-
ery trajectories following wildfire. 

 
While post-fire recovery timescales vary widely, an 

additional challenge for comparing recovery timescales is due to 
differences in the statistical metrics and criteria chosen to 
quantitatively assess hydrologic recovery. Authors may only 
qualitatively assess recovery rather than use a specific 
quantitative metric, as noted by Wagenbrenner et al. (2021), 
which prevents objective comparison of recovery timescales. As 
pointed out by Niemeyer et al. (2020), the timescale of recovery 
is influenced by a broad range of factors including burn severity 
(e.g., Kinoshita and Hogue, 2011), prior disturbance (e.g., 
Murphy et al., 2020), pre- and post-fire land management (e.g., 
García-Orenes et al., 2017), slope aspect (e.g., Cerda et al., 
1995), vegetation type (e.g., Nolan et al., 2015), and 
hydroclimatology in the years after the fire (e.g., Nolan et al., 
2015; Wittenberg and Inbar, 2009). Consistent recovery 
timescale assessment across the scientific community may help 
site intercomparisons and improve discerning the regional 
differences in landscape (e.g., edaphic, geologic, vegetation), 
pyrologic (e.g., percent burned, burn severity, time since last 
fire), and climatic/hydrologic (e.g., hydroclimatology, dominant 
runoff generation mechanisms) factors that affect recovery.  
Variations in recovery timescales for different recovery metrics 
also highlight the benefit of multiple-metric assessments when 
estimating recovery timescales. 
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NEW PROPOSED HYDROLOGIC RECOVERY 
ASSESSMENT FRAMEWORK 

 
A sequential application of the terminology for hydrologic re-

covery, identified in this review, can facilitate a new framework 
for recovery assessment that will enable comparisons across 
sites. This framework (Figure 4, Table 1) starts with selecting a 
recovery approach (step 1): statistical, functional, or a combina-
tion of both. The second step is to select and calculate the recov-
ery metrics for the system property or hydrologic variable(s) of 
greatest importance. Next, a user evaluates the recovery criteria 
(step 3) to determine if recovery has occurred at each of the 
timesteps. If the hydrologic system has achieved recovery, then 
trajectories and timescales are determined (step 4). If recovery is 
not yet achieved, then recovery criteria are re-evaluated at the 
next timestep (Figure 4). 
 
DISCUSSION 
Recovery approaches: A comparison of statistical and func-
tional approaches 

 
Statistical and functional approaches to assessing hydrologic 

recovery after fire have numerous similarities. For example, met-
rics for assessment need to be defined for both approaches. Sim-
ilarly, some quantitative criteria are needed for both approaches 
to confirm or refute that the selected metrics have achieved re-
covery. As such, one could argue that if a metric related to hy-
drologic function and ecosystem services is used, that both the 
statistical and functional recovery approaches will produce the  
 

same results. However, the statistical approach typically requires 
achieving a quantitative recovery criterion relative to the long-
unburned condition. Comparatively, the functional approach has 
a less stringent quantitative recovery criterion of achieving an 
acceptable level of hydrologic function, even if it is considerably 
different from the pre-fire condition. Given these slight differ-
ences, if a pre-fire or reference-impacted (i.e., adjacent, similar 
unburned site) comparison is possible, the statistical and func-
tional recovery approaches could be used in combination (Ebel, 
2020; Ebel et al., 2022), potentially leading to a more robust as-
sessment of recovery (two-way arrow in Figure 4). 
 
Advantages and drawbacks of recovery approaches 

 
The statistical recovery approach has the advantage of being 

a relatively simple and objective analytical approach, which re-
quires defined quantitative criteria to evaluate recovery. A crite-
rion, such as the 95% confidence interval of the pre-fire metric 
(Wagenbrenner et al., 2021), provides a clear metric to assess 
recovery. However, the statistical recovery approach has the dis-
advantage of requiring pre-fire data from the same field site (be-
fore-after design) and/or a comparable nearby site (control-im-
pacted design) and also the additional expense of data collection 
before the fire or in a paired plot or watershed. In their review of 
post-fire hydrologic recovery in Mediterranean ecosystems, 
Wagenbrenner et al. (2021) documented that only 2 out of 38 
sites had used the most stringent criteria, which combined be-
fore-after and control-impact study design (Cosandey et al., 
2005; Hoyt and Troxell, 1934). A third type of criterion noted by 
 

 
Fig. 4. Proposed hydrologic recovery assessment framework following wildfire. The two-way arrow between statistical and functional re-
covery assessments indicates that the approaches are not mutually exclusive and can be used in concert. 
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Wagenbrenner et al. (2021) was the hypothetical design, where 
it was assumed that the pre-fire condition would result in little to 
no observed response in the hydrological variable of concern. As 
such, if there is little to no hydrologic or sediment response to 
precipitation after the site burns, it was deemed hydrologically 
recovered (e.g., Andreu et al., 2001; Cole et al., 2020; Hubbert 
et al., 2012; Keller et al., 1997; Prats et al., 2016). This approach 
was used in 14 of the 38 sites in Wagenbrenner et al. (2021). 
Arguably, this type of hypothetical criterion represents func-
tional rather than statistical recovery. 

The functional recovery approach has the benefit of not nec-
essarily requiring pre-fire data or a paired site for comparison to 
the burned hydrologic response. However, the functional ap-
proach has the limitation of needing to accurately quantify the 
hydrologic function requirements for a given purpose or multiple 
purposes (e.g., De Graff, 2018; Ebel, 2020; Pereira et al., 2021). 
Additionally, assessment of functional recovery may need to 
project hydrologic functional adequacy into the future to account 
for vegetation or climate shifts (e.g., Halofsky et al., 2020). 
Many functional recovery approaches may be more robust when 
a hydrologic model is used in combination with observed data us-
ing before-after or control-impacted study designs to assess the 
hydrologic functional recovery. Some recent functional recovery 
assessments have relied on empirical data supplemented with hy-
drologic modeling (e.g., Ebel, 2020; Ebel et al., 2022; Flerchinger 
et al., 2016). The functional recovery approach may also be more 
intuitive to the public or community organizations and thus lead 
to greater engagement and support for recovery assessments 
(e.g., Badik et al., 2022; Gannon et al., 2019; Pereira et al., 2016). 

 
Barriers and challenges for assessing post-fire hydrologic 
recovery 

 
The influences of climate, vegetation (including variability in 

pre- and post-fire conditions), landscape position or condition, 
post-fire land-management, and anthropogenic stressors are ma-
jor challenges to assess the hydrologic recovery. Numerous ef-
forts assessing recovery have shown that the duration of moni-
toring greatly affects recovery assessment, and with longer mon-
itoring periods tending to show that sites can oscillate in and out 
of the recovered state (Cerdá and Doerr, 2005; Niemeyer et al., 
2020; Wagenbrenner et al., 2021). In many regions, pre-fire data 
to assess recovery using a before-after experimental design are 
unavailable, complicating recovery assessment using a statistical 
approach. Post-fire drought can delay recovery or give a false 
impression of recovery. Vegetation change following fire may 
also alter hydrologic states, fluxes, and function when a type con-
version takes place, which could confound achievement of re-
covery criteria for a given recovery metric (e.g., Collar et al., 
2021; Mayor et al., 2016). Recovery trajectories and timescales 
can also vary widely between vegetation types, complicating se-
lection of recovery metrics and criteria for large regions (Cerdà 
et al., 2021; Meyn et al., 2007; Novák et al., 2009). Landscape 
position or condition can also affect the determination of hydro-
logic recovery, with some slope aspects having different recov-
ery trajectories and timescales (e.g., Cerda et al., 1995; Kinoshita 
and Hogue, 2011). Post-fire land management, including treat-
ments to reduce runoff and erosion as well as post-fire logging 
or site preparation for planting can substantially affect recovery 
trajectories (e.g., Barroso et al., 2021; Cole et al., 2020; Di Prima 
et al., 2017; García-Orenes et al., 2017; Kim et al., 2021; 
Leverkus et al., 2021; Vieira et al., 2018; Wagenbrenner et al., 
2015) and may influence the selection of a recovery determina-
tion approach. Incorporating anthropogenic stressors (e.g., al-
tered disturbance regimes, habitat conversion and degradation, 

invasive vegetation species, pollution, see Maxwell et al. (2016)) 
may be essential when assessing functional recovery, especially 
when projecting hydrologic function of fire-affected watersheds 
into the future (Kinoshita et al., 2016).  

Temporal and spatial variability in post-fire soil properties 
and hydrologic processes can be an impediment to recovery de-
termination. Spatial variability in post-fire infiltration (Kinner 
and Moody, 2010; Moody et al., 2019; Pierson et al., 2001), run-
off and debris flows (e.g., McGuire and Youberg, 2020; Valeron 
and Meixner, 2010), and soil moisture (e.g., Cerdà, 1998; Ebel 
et al., 2012), along with links between soil-water repellency and 
runoff generation (e.g., Woods et al., 2007), and spatial scale de-
pendency (Ferreira et al., 2005; Wilson et al., 2018)  can compli-
cate recovery assessment and potentially require a cost-prohibi-
tive number of measurements to quantify differences in burned 
and unburned locations (Ebel, 2022). Temporal variability in 
post-fire measurements, including oscillating recovery trajecto-
ries (see Figure 2 and Cerdá and Doerr, 2005; Perkins et al., 
2022), can also serve as a barrier to reliable assessment of hydro-
logic recovery (Pierson et al., 2001).  

The assumed inevitability of return to a hydrologically stable 
condition is not guaranteed and is a potential conceptual barrier 
to functional post-fire recovery assessment. Hydrologically or 
ecologically sound endpoints, defined as a set of conditions or 
functions that benchmark recovery (Hughes et al., 1990), are not 
singular, and instead multiple stable states may be present after 
fire (Lasslop et al., 2016; Mirus et al., 2017; Williams et al., 
2016b; Wolf et al., 2007). Some of these multi-stable-state sys-
tems experience abrupt and rapid transitions between states, such 
that a system could be assessed as close to, or has achieved, func-
tional hydrologic recovery and then quickly shift to an alternate 
state with reduced hydrologic function that could cause substan-
tial land and water management challenges (e.g., May, 1977; 
Scheffer et al., 2001).  

Furthermore, many recovery timescales and trajectories are 
possible depending on the landscape and pyrologic factors (see 
Figures 2, 3). This makes global or even regional standardization 
of recovery criteria potentially impractical; however, defining 
similar regions (such as the U.S. Environmental Protection 
Agency ecoregions, Omernik (1987)) may aid in developing re-
covery criteria that are regionally extensible (Hughes et al., 
1990). Concepts such as pyromes (Archibald et al., 2013; Boer 
et al., 2021), combined with biome or ecoregion classifications 
may aid in developing consistent regional metrics and criteria to 
assess recovery.  

A substantial barrier when comparing statistical recovery of 
post-fire hydrologic response across sites is an absence of stand-
ardization of metrics and criteria, including lack of information 
regarding what recovery approach, metric, or criteria were used. 
This barrier could prevent inter-site comparisons of recovery 
timescales and the factors that most greatly affected hydrologic 
recovery (Moody et al., 2013; Robinne et al., 2020; 
Wagenbrenner et al., 2021). Development of suites of metrics 
and criteria (e.g., Rojas et al., 2022) may advance standardization 
of recovery assessment after fire. Application of data sources 
with readily comparable values and widespread geographic 
availability could also help surmount the barrier of metric stand-
ardization. Remotely-sensed data are an example of such widely 
available data sources that could facilitate common metrics and 
criteria across study sites for recovery assessment and satellite 
products such as the change in the normalized burn ratio (dNBR) 
and leaf-area index (LAI) have been used successfully in post-
fire hydrologic recovery assessments (e.g., Ebel et al., 2022; Liu 
et al., 2021; Moreno et al., 2019; Thomas et al., 2021). 
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Opportunities to advance hydrologic recovery assessment 
after wildfire 

 
In this review and synthesis of post-wildfire hydrologic 

recovery, we highlighted five promising opportunities for 
advancement. These five identified opportunities were: (1) 
concurrently using and fusing statistical and functional recovery 
approaches when feasible, (2) collecting longer-term data with a 
greater variety of measurement types to facilitate broader 
ensembles of recovery metrics for more robust recovery 
assessments, (3) conjunctively using observation and modeling-
based hydrologic recovery assessments, (4)  developing suites of 
recovery metrics and criteria for common hydrologic concerns 
and regions that facilitate comparison of recovery timescales and 
trajectories across studies, and (5) promoting the use of 
commonly available data such as remotely sensed metrics of 
recovery.  

 
SUMMARY 

 
The hydrologic recovery of watersheds is critical for guiding 

land and resource management both before and after wildfire. 
We reviewed research focused on hydrologic recovery after 
wildfire and identified concepts and terminology. We also 
synthesized a framework to guide hydrologic recovery 
assessment. The framework links statistical and functional 
recovery approaches, metrics, and criteria to identify recovery 
timescales and trajectories. Principal challenges to post-fire 
hydrologic recovery assessment are the potentially confounding 
influences of vegetation and climate shifts along with post-fire 
land management, spatial and temporal variability in 
measurements, lack of standardization of metrics and criteria, 
and multiple stable ecosystem states. Five potential opportunities 
to advance post-fire hydrologic recovery assessments were 
highlighted and focus on combining statistical and functional 
recovery approaches, broadening data streams for recovery 
assessment, and applying more consistent suites of recovery 
metrics and criteria. 
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