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A B S T R A C T   

Increasing occurrence of large and severe wildfires represents a growing threat to forested watersheds and the 
many ecosystem services they provide. Past research has shown that wildfires can cause substantial increases in 
peak flows and annual water yields, leading to potential water quality concerns and land and water management 
challenges. However, responses have been variable, and there have been few studies at large basin scales, leading 
to uncertainties about post-fire hydrologic responses. To address these uncertainties, we projected the effect of 
three large wildfires (>70,000 ha) on streamflow in two important forested watersheds in the Cascade Range of 
Oregon, US. We modeled the streamflow response using the Soil and Water Assessment Tool (SWAT) model, 
calibrated on data from prior to the wildfires. We modified model parameters to represent the impacts of the 
wildfires based on burn severity maps. Burned and unburned scenarios were compared using random forest 
models to identify drivers of increased annual water yields and peak flows. Post-fire annual water yield changes 
were controlled by burn severity, annual precipitation, area burned, aridity, and vegetation type, while post-fire 
peak flow changes were controlled by burn severity, area burned, aridity, soil type, and geologic province. We 
also found that post-fire increases in annual water yields, peak flows, and low flows were greatest at the 
headwater scale but were more muted at the downstream basin scale. Our work provides valuable insights into 
the range of potential post-fire streamflow changes at the headwater and larger basin scale, which is becoming 
increasingly critical for effective forest and water management decisions.   

1. Introduction 

Forested basins are critical sources of drinking water, providing 
water supplies to almost one-third of the world’s largest cities and two- 
thirds of cities in the United States (US) (Committee on Hydrologic 
Impacts of Forest Management, 2008; Dudley and Stolton, 2003). 
Healthy forests are naturally effective at filtering and storing water, 
which are services that save an estimated $25.9-billion dollars world-
wide every year (Costanza et al., 1997). However, healthy source water 
supplies are increasingly at risk due to growing pressures from urbani-
zation (Paul and Meyer, 2001; Walsh et al., 2005), deforestation (War-
ziniack et al., 2017), climate change (Delpla et al., 2009; Murdoch et al., 
2000), extreme weather events (Khan et al., 2015), forest pathogens 
(Bladon et al., 2019), pest outbreaks (Kurz et al., 2008; Mikkelson et al., 
2013), and wildfire (Bladon et al., 2014; Hohner et al., 2019). As a 
result, water crises, or significant issues with streamflow and water 
quantity, have been identified as representing one of the greatest global 

risks that could negatively impact society (Martin, 2016; World Eco-
nomic Forum, 2015). Therefore, it is critical to improve our under-
standing of the variability and drivers of source water changes from 
these growing pressures. 

In particular, there is increasing concern about the effects of wildfire 
on surface source water supplies (Bladon, 2018; Hallema et al., 2018; 
Martin, 2016; Robinne et al., 2021) due to recent and dramatic increases 
in the timing, extent, and severity of wildfire activity in many regions of 
the world (Flannigan et al., 2009; Moritz et al., 2012; Reilly et al., 2017). 
Historical evidence and modeling efforts suggest that we will continue to 
observe years with elevated fire danger, contributing to longer fire 
seasons and increased burned area (Abatzoglou et al., 2021; Flannigan 
et al., 2013; Murphy et al., 2018). In part, the increase in area burned is 
attributable to warmer temperatures, earlier spring snowmelts, 
increased fuel aridity, and greater fuel accumulation (Abatzoglou et al., 
2018; Marlon et al., 2012; Westerling, 2016). Indeed, in recent years, 
many areas around the globe have experienced some of their most 
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destructive wildfire seasons in recorded history. For example, in 2020, 
2.9-million ha burned in California, Washington, and Oregon alone—29 
% of the total area burned in the US that year. Across the entire US, the 
area burned in 2020 was 2.1-times greater than the long-term average 
(Congressional Research Service, 2021; Geographic Area Coordination 
Center, 2020; National Interagency Fire Center, n.d.). Similarly, the 
2019–2020 wildfire season in Australia burned almost 19-million ha, 
consuming ~21 % of the temperate forest biome in that region, pri-
marily in New South Wales and Victoria (Boer et al., 2020; Filkov et al., 
2020). In 2017 and 2018, wildfires in British Columbia, Canada burned 
3.3- to 3.7-times more area than the 10-year average (2009–2019) (BC 
Wildfire Service, n.d.). In Europe, many countries, including Spain, 
Italy, Portugal, Sweden, and the UK have all experienced notable 
wildfire seasons in recent years (Henley and Jones, 2019; San-Miguel- 
Ayanz et al., 2020). 

Recent empirical studies have illustrated that wildfires can cause 
large and long-lasting effects on a wide range of hydrological processes 
(Niemeyer et al., 2020; Poon and Kinoshita, 2018; Rhoades et al., 2019). 
For example, wildfires can impact soil hydraulic properties, reducing 
infiltration rates and changing water partitioning between surface and 
subsurface flow (Ebel and Moody, 2017; Moody et al., 2016; Moody and 
Ebel, 2014). Additionally, the presence of ash, water repellent layers in 
the soil, surface sealing, and reduced ground cover can contribute to 
increased occurrence of surface runoff (Balfour et al., 2014; Bodí et al., 
2012; Certini, 2005; Larsen et al., 2009; Lavee et al., 1995). Combined 
with reduced interception losses and higher net precipitation (Kusaka 
et al., 1983; Ma et al., 2020; Stoof et al., 2012; Williams et al., 2019), 
these effects often lead to increased annual water yields and peak flows, 
and changes to the timing of water availability, with effects potentially 
lasting for multiple decades (Coombs and Melack, 2013; Hallema et al., 
2017a; Niemeyer et al., 2020; Wagenbrenner et al., 2021). 

Post-fire changes to annual water yields across a number of regions 
and basin sizes have been observed to range from no change up to a 450 
% increase (Bart, 2016; Bart and Hope, 2010; Campbell et al., 1977, 
1977; Hallema et al., 2017b; Helvey, 1980; Loáiciga et al., 2001; Mahat 
et al., 2016; Niemeyer et al., 2020; Owens et al., 2013; Scott, 1997; Wine 
and Cadol, 2016). Wildfire can also affect both peak flows and low flows. 
Peak and storm flows have been found to increase between 20 % and 
290 % in Alberta, CAN, Washington, US, and South Africa (Mahat et al., 
2016; Niemeyer et al., 2020; Scott, 1997), while low flow increases of 40 
% to 1090 % have been measured in California and Washington, US and 
Alberta, CAN (Kinoshita and Hogue, 2015; Mahat et al., 2016; Niemeyer 
et al., 2020). 

Shifts in the streamflow regime can have substantial impacts on 
aquatic ecosystems and downstream water supply. For example, 
elevated low flows, which are critical for aquatic ecosystem habitat, 
could help maintain cool stream temperatures and expand fish and other 
species’ habitats during the critical summer months (Bradford and 
Heinonen, 2008; Mayer, 2012). Similarly, increased low flows could 
potentially provide additional water supplies to downstream commu-
nities during the summer period, which is often the period of highest 
water demand. Alternatively, post-fire increases in peak flow can lead to 
increased flooding and debris flow events (Moody and Ebel, 2012; Neary 
et al., 2003; Wall et al., 2020), increased water quality concerns like 
sediment, nutrients, and metals (Bladon et al., 2008; Emelko et al., 2016; 
Smith et al., 2011), and greater and more costly challenges for drinking 
water treatment (Emelko et al., 2011; Hohner et al., 2019). 

However, there remains a lot of uncertainty about the post-fire hy-
drologic and water quality effects due to the substantial variability in 
responses as a result of site-specific controlling factors. For example, 
previous studies have identified burn severity (Rhoades et al., 2011; 
Rust et al., 2019), percent area burned (Rhoades et al., 2011), post-fire 
precipitation (Mast et al., 2016; Murphy et al., 2015), slope (Moody 
et al., 2013; Shakesby, 2011), aspect (Ebel, 2013), and aridity (Rust 
et al., 2019; Sheridan et al., 2015; Van der Sant et al., 2018) as potential 
controls on the streamflow or water quality response. However, little 

work has been done comparing the importance of these different factors 
to identify principal drivers, especially across scales from headwaters to 
downstream basin outlets. This type of information will facilitate 
improved policy and land management decisions to mitigate effects on 
source water supplies both before and after wildfires (Moody et al., 
2013). 

While previous studies have found increases in streamflow after 
wildfire, we have a poor understanding of the range of effects, partic-
ularly in larger basins (Emmerton et al., 2020; Hallema et al., 2017a; 
Shakesby, 2011; Wu et al., 2021). This is partially due to the random 
nature of wildfires, which makes tightly controlled experiments chal-
lenging. Thus, models provide an opportunity to make projections of the 
magnitude of effects and assess various post-fire scenarios. One of the 
major advantages of a modeling approach is its ability to simplify 
complex systems (Mirchi et al., 2010). This provides a cost- and time- 
effective way to generate high-frequency, continuous data (Borah and 
Bera, 2004; Lund and Palmer, 1997). Models also allow for standardized 
comparisons of future conditions and alternative scenarios (Borah and 
Bera, 2004; Lund and Palmer, 1997). Critics may argue that simplifi-
cation renders model outputs of little value due to model assumptions 
and uncertainty and, indeed, some models should not be used to provide 
quantitative results. However, the reduced complexity makes models 
extremely useful for hypothesis development and testing, where those 
hypotheses can be field-tested in complex systems (Grayson et al., 
1992). Additionally, for wildfire-specific studies, the ability of a model 
to provide unburned and burned outputs for the same spatial and cli-
matic conditions overcomes one of the major challenges in wildfire 
research (Ebel and Mirus, 2014). 

Several hydrologic models have previously been modified to inves-
tigate post-wildfire hydrologic responses (Ebel et al., 2023), including 
WEPP (Dobre et al., 2022), the McGuire-Rengers model (McGuire et al., 
2017; Rengers et al., 2016), and the Soil and Water Assessment tool 
(SWAT) (Havel et al., 2018; Loiselle et al., 2020). However, many 
models, like WEPP, the McGuire-Rengers model, or RHESSys, are con-
strained to hillslope to small basin scales, and are rarely used to model 
wildfire effects at scales larger than 5 km2 (Ebel et al., 2023). Compar-
atively, the SWAT model is a time-continuous, semi-distributed, process- 
based model that enables projections of streamflow at a river basin scale 
(Neitsch et al., 2011). Post-wildfire hydrologic modeling with SWAT has 
been completed for catchments in the Western US, Canada, Spain, 
Portugal, and Brazil (Basso et al., 2020; Loiselle et al., 2020; Morán- 
Tejeda et al., 2015; Rodrigues et al., 2019). These modeling efforts have 
projected increases in streamflow of 8 to >500 % at the subbasin scale 
(~5–270 km2; Basso et al., 2020; Havel et al., 2018; Loiselle et al., 2020) 
and 2.4 % at the larger watershed scale (1500 km2; Morán-Tejeda et al., 
2015). Additionally, models have illustrated relationships between 
streamflow responses and both area burned (Havel et al., 2018; Rodri-
gues et al., 2019) and burn severity (Loiselle et al., 2020), which is 
consistent with empirical studies. 

The objective of our study was to provide additional insights into the 
potential effects of large-scale wildfire on streamflow in two basins in 
the Pacific Northwest by using a modeling approach. Specifically, we 
sought to answer the following questions for key source water catch-
ments on the west slopes of the Cascade Range in Oregon, US: (a) How 
does wildfire affect peak flows and annual water yields at the subbasin 
and basin scale? (b) How does watershed scale affect the magnitude of 
post-fire streamflow changes? (c) What are the principal drivers of dif-
ferences in post-fire streamflow responses at the sub-catchment scale? 

2. Materials and methods 

2.1. Study area 

Our study area included two large basins on the west slopes of the 
Cascade Range in Oregon, USA (Fig. 1). Specifically, we modeled the 
North Santiam River Basin (44◦47′N, 122◦45′W), which supplies 
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drinking water to ~200,000 residents in the Salem, OR area. We also 
modeled the McKenzie River Basin (44◦40′N, 122◦57′W), which pro-
vides drinking water to ~200,000 residents in the Eugene, OR area. Both 
basins have steep, forested uplands where the headwaters to the North 
Santiam and McKenzie Rivers originate. Generally, both rivers flow west 
to agricultural land with little relief. Both basins are within a Mediter-
ranean climate with cool, wet winters and dry, warm summers (Kottek 
et al., 2006; Snyder et al., 2002). The basins receive an average of 2,114 
mm of precipitation annually—although, due to orographic effects, it 
ranges from approximately 1,000 mm to 3,000 mm (PRISM Climate 
Group, 2012). The basins are rain dominated below 400 m, mixed rain 
and snow between 400 and 1,200 m, and snow dominated above 1,200 
m. The average annual water yield in the McKenzie at the Hayden Bridge 
treatment plant is 1,447 mm (2007–2019, USGS site 14164900). 
Average annual water yields in the North Santiam near the outlet are 
1,830 mm (1960–2019, USGS site 14183000). Annual 30-year normal 
air temperatures range from minimums of − 4.0–5.9 ◦C in the winter to 
maximums of 6.9–17.3 ◦C in the summer (PRISM Climate Group, 2012). 
Approximately 80 % of both basins are forested land, comprised mainly 
of Douglas-fir (Pseudotsuga menziesii), Western hemlock (Tsuga hetero-
phylla), and Pacific silver fir (Abies amabilis). While our two study basins 
have many similarities, they also have slight differences in land use, 
geology, topography, and area (Table 1). Additionally, due to a large 

proportion of High Cascade geology, the McKenzie River Basin has many 
influential springs, which may contribute as much as 80 % of the 
discharge during the summer low flow period (Jefferson, 2006). 

Wildfires in both basins have been relatively infrequent, with a total 
area burned from 1984 to 2019 of 14,746 ha in the North Santiam and 
31,534 ha in the McKenzie. However, in August to October 2020, 
wildfires in the two basins burned a combined area of 146,580 ha, which 
was ~3.2-times greater than the total area burned from 1984 to 2019. 
Specifically, the Beachie Creek and Lionshead wildfires burned ~51 % 
of the North Santiam River Basin, with 67 % of the Beachie Creek fire 
and 45 % of the Lionshead fire burned at moderate to high severity 
(Table 2). Comparatively, the Holiday Farm fire burned ~18% of the 
McKenzie river basin at slightly higher severity with ~77 % of the area 
burning at moderate to high severity. As such, we sought to model the 
2020 Oregon wildfires to provide insights into the potential range of 
streamflow responses and to identify dominant drivers of variability in 
post-fire streamflow. 

2.2. Model description 

To model the streamflow response to wildfire, we used the Soil and 
Water Assessment Tool (SWAT 2012, rev. 664). We chose the SWAT 
model because of its ability to simulate hillslope runoff processes, 

Fig. 1. (a) Map of land uses in the North Santiam (top) and McKenzie (bottom) basins in Western Oregon, USA. Important basins referenced in the results are labeled 
and outlined in red. (b) Map of the fire perimeters and soil burn severities for the Beachie Creek (top left) and Lionshead (top right) fires in the North Santiam basin 
and the Holiday Farm wildfire in the McKenzie basin, which burned in 2020 in Oregon, USA. (c) Locations of hydrometric and precipitation data used in the model 
calibrations. 
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streamflow, and in-stream cycling of water quality parameters. SWAT is 
a physically-based, basin-scale, hydrologic model developed by the US 
Department of Agriculture. Basins are divided into sub-basins based on 
topographic maps and further divided into hydrologic response units 
(HRUs) based on land use, soil, and slope. Climate data is input into the 
model, which is used to calculate the water balance in each HRU, 
routing water, nutrients, and sediment through the basin (Gassman 
et al., 2007). SWAT was originally developed to model hydrology and 
crop growth in agricultural settings and has been modified to incorpo-
rate forested environments; however, the model does not have a built-in 
wildfire module. Thus, to simulate wildfire we modified individual pa-
rameters in the model source code (see section 2.4) to represent ex-
pected changes to the landscape and hydrology. 

We constructed the models using the ArcSWAT (2012.10.5.21) 
interface with a digital elevation model (30 m resolution; U.S. Geolog-
ical Survey, 2000), STATSGO2 soils data (30 m resolution; Natural Re-
sources Conservation Service, 2006), and the 2016 National Land Cover 
Database (30 m resolution; Yang et al., 2018). We also used a 1/24 
degree resolution downscaled global climate model for minimum and 
maximum daily air temperatures, average daily solar radiation, average 
daily wind speed, and average daily relative humidity from 1950 
through 2019 (Abatzoglou and Brown, 2012). The best climate model 
for each variable was chosen by comparing the modeled climate vari-
ables to data from nearby meteorological stations (Table 3). Due to the 
importance of precipitation in modeling streamflow and the difficulty of 
modeling it at a daily scale, we used observed precipitation data from 
1960 to 2019 from various publicly available sources (Daly et al., 2020; 

National Climatic Data Center, n.d.; Natural Resources Conservation 
Service Oregon, n.d.; The University of Utah, n.d.). We used data from 
13 precipitation stations in the North Santiam basin and 21 precipitation 
stations in the McKenzie basin (Fig. 1). Precipitation was gap-filled using 
the hyfo package (Xu, 2020) in R. 

In building the models, the basin outlet was set at the drinking water 
intakes for the cities of Salem (North Santiam) and Eugene (McKenzie). 
The Detroit Reservoir in the North Santiam Basin and the Blue River and 
Cougar Reservoirs in the McKenzie Basin were added into the model. 
This included setting up the reservoirs using the basin area and volume 
of both the emergency and principal spillways. We also input daily 
reservoir outflow data to the model to describe the daily outflow from 
each of the reservoirs (U.S. Army Corps of Engineers, n.d.). Model setup 
resulted in 125 subbasins (defined by SWAT as a first level subdivision of 
watersheds based on surface topography) in the North Santiam and 110 
subbasins in the McKenzie Basin. The subbasins were then further 
divided into HRUs, where each HRU had a single slope class, soil type, 
and land use. As a compromise between data resolution and computa-
tional loads, we specified 15 % threshold values for slope, soil, and land 
use, where areas below those thresholds were dissolved into the existing 
slope classes, soil types, and land uses (Her et al., 2015). Any areas 
within each basin that were classified as water (i.e., SWAT model land 
use class “WATR”) were retained as water in the model. This resulted in 
1,112 HRUs for the North Santiam and 973 HRUs for the McKenzie 
Basin. Lastly, to account for inputs to streamflow from springs in the 
McKenzie, we included seven point sources for spring water discharge to 
subbasins using an average annual discharge of >0.85 m3 s− 1, which 
was based on estimates by Jefferson et al. (2006). 

2.3. Model calibration 

For model calibration, we used the SWAT-CUP program (version 
5.1.1) with the SUFI-2 method. Calibration was performed using a 
parallel processing program, allowing the simulations to run simulta-
neously on multiple cores, shortening the calibration process (Du et al., 
2020). We used a warm-up period of four years and ran the model at a 
daily time step. Both models were calibrated for discharge from 2000 to 
2019 using seven monitoring points in the North Santiam and 13 
monitoring points in the McKenzie. Validation was performed from 
1990 to 1999 using six monitoring points in the North Santiam and nine 
monitoring points in the McKenzie. Both models were calibrated for 
streamflow and sediment, while we only present streamflow results 

Table 1 
Characteristics of the study basins, the North Santiam and McKenzie, located in 
the Western Cascade Range in Oregon, USA.   

Study Watershed 

Parameter N. Santiam McKenzie 

Major Land 
Uses 

Forest-Evergreen (80%), 
Range-Brush (12%), Hay 
(1.7%), Range-Grasses (1.4%) 

Forest-Evergreen (81%), Range- 
Brush (8.2%), Southwestern US 
(Arid) Range (3.6%) Range- 
Grasses (2.0%) 

Land 
Ownership   
Public 70% 69% 
Private 30% 31% 

Geology   
Geologic 
Group 

Little Butte Volcanics (30%), 
Quaternary surficial deposits 
(27%), Late Western Cascade 
Volcanics (18%), Late High 
Cascade Volcanics (17%) 

Little Butte Volcanics (32%), 
Quaternary surficial deposits 
(23%), Late High Cascade 
Volcanics (21%), Late Western 
Cascade Volcanics (14%), 

Primary 
Rock Type 

Basalt (49%) and Sand (17%) Basalt (66%) and Sand (15%) 

Soils Textures Silty Clay Loam, Clay Loam 
and Cobbly Loam 

Silty Clay Loam, Clay Loam and 
Cobbly Loam 

Elevation   
Minimum 45 m 89 m 
Mean 899 m 974 m 
Maximum 3170 m 3138 m 

Max Slope 69.8◦ 74.2◦

Mean Slope 16.2◦ 15.6◦

Watershed 
Area (ha) 

175,300 296,873  

Table 2 
Discovery date, area burned, and severity of the three wildfires that burned in the North Santiam and McKenzie Basins, Oregon, USA in 2020. Burn severity percentages 
were calculated from the severity classes identified in the BAER burn severity maps.  

Wildfire Watershed Discovery date Total area (ha) Area in basin (ha) Burn severity within basin 
% unburned % low % moderate % high 

Lionshead North Santiam 16 August 2020 82,794 38,448  15.9  39.0  35.0  10.0 
Beachie Creek North Santiam 16 August 2020 78,333 51,738  3.2  29.5  54.1  13.1 
Holiday Farm McKenzie 17 September 2020 70,169 56,394  3.8  20.8  65.6  11.0  

Table 3 
Climate models used in our SWAT simulations of the North Santiam and 
McKenzie River basins based on their correlation with observed meteorologic 
data.  

Variable North Santiam McKenzie 

Climate model Mean 
R2 

Climate model Mean 
R2 

Temperature inmcm4  0.86 NorESM1-M  0.85 
Relative 

humidity 
MIROC-ESM- 
CHEM  

0.41 MIROC-ESM- 
CHEM  

0.41 

Solar radiation HadGEM2-CC365  0.86 HadGEM2-CC365  0.86 
Wind speed GFDL-ESM2M  0.15 GFDL-ESM2M  0.15  
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here, calibrating for both streamflow and sediment increases confidence 
that the underlying physical processes are being correctly represented in 
the model. A regionalization approach was taken to calibrate the 
models, where calibration was performed for each subbasin with a 
monitoring point and its upstream basins. We first calibrated the up-
stream monitoring points, working downstream to the basin outlet. We 
evaluated model performance using the Nash Sutcliffe Efficiency (NSE) 
and adjusted R2 coefficients (bR2). Best parameters were determined by 
performing 500 simulations at a time, manually narrowing parameter 
ranges based on the best parameter values from the previous model run. 

Observed discharge data used to calibrate the model was aggregated 
from several sources. The waterData package (Ryberg and Vecchia, 
2017) in R (R Core Team, 2020) was used to obtain discharge data from 
USGS gauging sites. We also used stream discharge data from the HJ 
Andrews Experimental Forest (Johnson et al., 2020) and data on spring 
contributions to streamflow from Jefferson et al. (2006) to calibrate the 
model. 

2.4. Wildfire simulations 

We modeled both the Beachie Creek and Lionshead wildfires in the 
North Santiam Basin and the Holiday Farm wildfire in the McKenzie 
Basin. We set the start date of the wildfires in the model to 7 September 
2020, which was the actual start date for the Holiday Farm fire and the 
date that the Beachie Creek and Lionshead fires rapidly expanded in size. 
A wildfire module was developed where, during a model run at the 
wildfire date, multiple parameters in the model were modified to 
represent the effects of wildfire on the landscape. To select the range of 
parameters to represent the effects of wildfire, we developed a concep-
tual model of expected effects based on literature values and expert 
opinion (Fig. 2). To model the mixed-severity burn patterns of the 2020 
wildfires, we specified parameter changes for low, moderate, and high 
severity conditions. Wildfire severity was determined from severity 
maps created by U.S. Forest Service Burn Area Emergency Response 
(BAER) teams and used to assign burn severities to HRUs in the burned 
area. Specifically, we used the ArcMap “Zonal Statistics as Table” tool to 
calculate the mean burn severity for each HRU where burn severities 
were represented by increasing integer values. In our model, we ensured 
the percent area burned at each severity class matched the percent area 
burned at each severity class of the actual fire as closely as possible. To 
do that, we chose threshold values of the HRU averaged burn severity to 
classify HRU’s with burn severities of low, moderate, and high. We used 
a broad definition of burn severity to refer to the effects of fire on the 
consumption of large fuels, shrubs, litter, organic matter, and buried 
plant parts (Monitoring Trends in Burn Severity, n.d.). Water HRUs were 

not burned in the simulation. 
We ran the calibrated models for one year following the fires, from 7 

September 2020 to 6 September 2021. We chose to only simulate one 
year at a time due to annual model memory effects and because the 
model does not represent wildfire recovery. As such, running the model 
continuously in the post-fire period would not accurately represent 
continuous years of post-fire conditions. We repeated the model run 56 
times for the McKenzie and 60 times for the North Santiam using 
different precipitation scenarios. Repeating the model run multiple 
times for the first post-fire year allowed us to hypothetically examine the 
effect of different annual precipitation in the initial post-fire period. 
Precipitation for each single year simulation was generated from the 
range of historical precipitation for each basin. During each simulation, 
a year of the precipitation data was selected from the historic record, 
matching the day of year (7 September 2020 to 6 September 2021), and 
used as the precipitation input for the post-fire year. For each simulation 
we used the reservoir data from the same year as the precipitation data 
to account for differing annual reservoir management. Other climate 
variables, including minimum and maximum temperature, wind speed, 
solar radiation, and relative humidity used the predicted values from the 
MACAv2 gridded climate model (RCP 8.5, Table 3) from 7 September 
2020 to 6 September 2021. The historic precipitation data included 
years 1960–2019 from the North Santiam and 1964 to 2019 for the 
McKenzie. 

We developed a module in SWAT to enable us to simulate the effects 
of wildfire by changing various model parameters such as saturated 
hydraulic conductivity, available water capacity, bulk density, soil and 
plant uptake evaporation compensation factors (used to adjust the depth 
distribution of soil and plant evaporative demand), curve number, 
Manning’s n for overland flow, and land use type. Details on how each of 
these factors was modified to represent wildfire in the model are pro-
vided below and are summarized in Table 4. 

2.4.1. Saturated hydraulic conductivity 
Saturated hydraulic conductivity is used in the model to determine 

the rate of vertical water percolation through soil layers, it is not directly 
used to calculate runoff volumes. We modified soil saturated hydraulic 
conductivity in the upper soil layer based on the relationship developed 
by Moody et al. (2016) (Equation 1). 

Kfs = 2360e− 0.0056dNBR (1)  

where Kfs is field saturated hydraulic conductivity and dNBR is differ-
enced normalized burn ratio, a satellite derived metric that is commonly 
used to capture wildfire-caused differences in leaf area, plant produc-
tivity, and moisture. For dNBR values less than 400 the saturated hy-
draulic conductivity remained unchanged. For calculating changes in 
saturated hydraulic conductivity using Equation (1), we selected dNBR 
values of <400 for low burn severity, 550 for moderate burn severity, 
and 800 for high burn severity based values proposed by Lutes et al. 
(2006). Since our starting, unburned saturated hydraulic conductivity 
values were different than those in Moody et al. (147 mm h− 1; 2016), we 

Fig. 2. A conceptual model showing the motivations behind the parameters 
modified within SWAT to simulate wildfire effects. Fire consumes vegetation, 
resulting in shifts in forest structure and decreasing transpiration (a). The loss of 
vegetation results in less ground cover and less surface “roughness” (b). Phys-
ical soil properties like bulk density and erosivity can be altered by the heat of 
the fire (c). Soil hydraulic properties like infiltration are often altered by 
wildfire, generally resulting in increased surface runoff (d). 

Table 4 
Summary of SWAT parameters modified in the wildfire module at each fire 
severity.  

Parameter Replacement type Change based on fire severity 

Low Moderate High 

SOL_K(1) relative 0% − 26% − 82% 
SOL_AWC relative − 25% − 70% − 90% 
SOL_BD(1) relative 1% 9% 13% 
ESCO replace 0.5 0.8 1 
EPCO replace 0.5 0.2 0.01 
OV_N replace 0.8 0.4 0.011 
Land Use replace FRSE RNGE BARR 
CN2 additive 10 20 30  
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quantified the absolute change between their starting values and the 
values predicted by the dNBR thresholds. We then converted those 
values to a relative change, which was broadly applicable across satu-
rated hydraulic conductivities. This resulted in modifications of hy-
draulic conductivity of 0 % for low severity, − 26 % for moderate 
severity, and − 82 % for high burn severity for the fire module. 

2.4.2. Available water capacity 
During calibration we increased the available water capacity—a 

model parameter to account for the water available to plants for tran-
spiration—in the soils to account for the high resistance to xylem 
dysfunction and ability to transpire at low soil water potential by 
Douglas-fir, the dominant tree species in our study basins (Brooks et al., 
2006; Domec et al., 2008, 2004; Fan et al., 2017). However, for the 
wildfire scenario, we decreased the available water capacity to account 
for post-fire changes in vegetation (i.e., mortality of Douglas-fir trees 
due to wildfire) to help meet the expected decrease in catchment-level 
transpiration, which has been observed to decline by up to ~55% 
following high severity wildfire (Ma et al., 2020; Roche et al., 2018). 
Available water capacity was reduced 90 % for high severity, 70 % for 
moderate severity, and 25 % for low severity. Available water capacity 
changes were determined by testing scenarios where the entire basin 
burned and choosing changes that would result in ET drops matching 
existing literature values (Ma et al., 2020; Roche et al., 2018). Admit-
tedly, adjusting available water capacity is not an ideal way to account 
for decreased transpiration post-fire, as it can impact the amount of 
water held within the soil. Leaf area index and rooting depth also control 
plant transpiration within the model. However, we found these pa-
rameters insensitive. Which is likely due to SWAT’s origins as an agri-
cultural model, as such, forests are typically not well represented (Haas 
et al., 2022). 

2.4.3. Soil bulk density 
We increased the bulk density of the upper soil layer by 13 % for high 

severity, 9 % for moderate severity, and 1 % for low severity fire. We 
determined these estimates of post-fire changes in bulk density from 
literature values associated with laboratory burning experiments (Badía 
and Martí, 2003; Stoof et al., 2010) and empirical studies (Ebel and 
Moody, 2020; Xue et al., 2014). In general, the heat generated during 
wildfires can affect soil texture (Badía and Martí, 2003; Ulery and 
Graham, 1993), organic matter content (Alauzis et al., 2004; García- 
Corona et al., 2004), and overall soil structure (Ebel and Moody, 2020), 
which modify the overall bulk density. 

2.4.4. Soil and plant uptake evaporation compensation factors 
The soil evaporation compensation factor (ESCO) is a coefficient in 

the model that allows the user to modify the depth distribution of soil 
evaporation. The coefficient ranges from 0.01 to 1.0, as ESCO decreases, 
more water can be taken from deeper soil levels. Similarly, the plant 
uptake compensation factor (EPCO) is a coefficient that allows the user 
to modify the depth of water in the soil that vegetation can access for 
transpiration, EPCO also ranges from 0.01 to 1.0, however in this case, 
larger values equate to water demand able to be met by deeper soil 
levels. In our wildfire scenarios, we increased the ESCO and decreased 
the EPCO, which limited the depth of soil water use after fire occurrence. 
Specifically, for high severity, we set ESCO to 1 and EPCO to 0.01, for 
moderate severity we set ESCO to 0.8 and EPCO to 0.2, and for low 
severity we set ESCO and EPCO to 0.5. These modifications were made 
based on the loss of overstory vegetation and transpiration due to 
wildfire, as well as the increased bulk density (Ebel and Moody, 2020; 
Xue et al., 2014), surface sealing (Larsen et al., 2009), water repellent 
layers (Nyman et al., 2010; Robichaud, 2000), and a loss of porosity 
(Xue et al., 2014), which can all contribute to more surficial evaporative 
processes. 

2.4.5. Curve number 
The curve number is a widely used parameter for projecting the 

approximate proportion of precipitation that ends up as direct runoff. 
We increased the curve number relative to the initial values associated 
with the soils by 10 units for low severity, 20 units for moderate severity, 
and 30 units for high severity burns. If these increases resulted in a curve 
number greater than 98, we adjusted the values back to a maximum of 
98, which was representative of impervious surfaces. We determined 
these shifts in curve number values based on knowledge that changes in 
soil physical properties due to wildfire can lead to elevated infiltration 
excess overland flow (Malvar et al., 2011; Onda et al., 2008) and was 
consistent with previously proposed adjustments (USDA, 2013; USDA 
Forest Service, n.d.). 

2.4.6. Manning’s “n” for overland flow 
We also changed the Manning’s n values—a hydraulic roughness 

coefficient—to account for the differential effects of wildfire severity on 
soil surface roughness and resistance to overland flow. In general, 
greater wildfire severity results in greater ground cover consumption 
and loss of surface roughness components (Keeley, 2009; Parson et al., 
2010). Thus, we related the expected remaining ground cover associated 
with different burn severities to similar Manning’s n ground cover 
values. Specifically, we set Manning’s n to 0.80 for low severity, 0.40 for 
moderate severity, and 0.011 for high severity fires, which was also 
consistent with previous studies (USDA Soil Conservation Service, 
1986). 

2.4.7. Land use 
Given that wildfires can dramatically change forest structure and 

composition (Halofsky et al., 2020; Meng et al., 2015), we used the land 
use function in the model to represent the expected shifts in forest 
ecosystems associated with different fire severities. We made this deci-
sion because there was no option in the model to modify forest density 
but required a way to model the post-fire effects on the loss of evapo-
transpiration. Similar land use changes have been used previously 
within SWAT to account for post-fire decreases in transpiration (Loiselle 
et al., 2020). As such, we updated the land use, focusing principally on 
the loss of woody biomass from trees. Specifically, for low severity burns 
we did not change the original land use and, as such, forested areas were 
still considered to be forested as evergreen or conifer forests (FRSE). For 
moderate severity burns, we changed the land use to grasses (RNGE) 
while for high severity burns, we updated the land use to barren (BARR). 
These changes were necessary to produce a reasonably realistic reflec-
tion of the transpiration loss associated with wildfire, which is often the 
dominant hydrological process that is impacted, leading to additional 
water availability for runoff generation and streamflow (Ma et al., 2020; 
Niemeyer et al., 2020). 

2.5. Sensitivity analysis 

To determine the most sensitive parameters in our wildfire model, 
we ran a sensitivity analysis for both the North Santiam and McKenzie 
models. For each model we ran three wildfire scenarios, a low, moder-
ate, and high where the entire basin was burned at that severity. 
Sensitivity was tested by varying the parameters used in the wildfire 
module one at a time, running 100 simulations for each parameter with 
values ranging from the low to high severity wildfire module values. To 
test land use change, we replaced the existing land cover with the other 
generic land cover types one at a time, excluding water, which was a 
total of 18 simulations. For each scenario, initial conditions were set to 
the burned, wildfire module values for that severity, and a median 
precipitation scenario was used. Sensitivity was determined for both 
annual water yields and peak flows by first calculating the average 
change from the base, unburned scenario across all subbasins in the 
model. Then to get a measure of sensitivity we calculated the standard 
deviation of the average change across both models. 
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2.6. Statistical analysis 

Unfortunately, model predictions of streamflow often remain inac-
curate with substantial uncertainty due to limited calibration data, un-
resolved model parameter values, and poor representation of physical 
processes (Faramarzi et al., 2015; Zaremehrjardy et al., 2021). However, 
in our study, we were not concerned about producing accurate pre-
dictions of the streamflow response to wildfire. Rather, we were inter-
ested in quantifying and estimating the relative change in streamflow 
from the unburned to burned scenarios, which enabled us to not be 
constrained by model uncertainty. Model calibration ensured that the 
physical processes were reasonably represented—our model fits pro-
vided evidence that the model was indeed representing the physical 
processes adequately. Despite the adequate representations of physical 
processes in the model, differences in model parameterization can pro-
duce variability in relative streamflow changes (Boisrame et al., 2019). 

Annual summaries of water yield and peak streamflow were deter-
mined for both the basin outlets and the headwater subbasins, where the 
headwater subbasins did not have upstream subbasins. Peak streamflow 
was determined as the maximum daily flow in each precipitation sce-
nario year. Linear mixed effects (LME) models were created for annual 
water yields and peak streamflow using the nlme package in R (Pinheiro 
et al., 2020). This analysis was used to find the differences between burn 
and unburned scenarios and test if there was statistical evidence for an 
effect of wildfire. The basin and wildfire scenario were the fixed effects 
in the model with precipitation scenario/basin as nested random effects. 
Variance of errors were allowed to vary by basin. Subbasins that were 
not burned were removed before analysis. Additionally, to simplify the 
headwater models, we used the mean percent change of all the head-
water subbasins in each model for each precipitation scenario. The LME 
model for peak streamflow changes at the headwater scale was log10 
transformed to normalize the residuals. We used the R package emmeans 
to extract the mean and 95 % confidence intervals from the LME model 
and ran Tukey multiple comparison tests to check for significant dif-
ference in the mean values between groups (Lenth, 2021). 

To visualize the effect of the wildfire scenario across all flow mag-
nitudes, flow duration curves were created for both the burned and 
unburned scenarios for individual subbasins. The streamflow data was 
sorted and ranked by descending magnitude, including all the precipi-
tation scenarios. Similarly, flood recurrence intervals for both burned 
and unburned scenarios were calculated by ranking the streamflow 
across all precipitation scenarios in descending order of magnitude. We 
then calculated return periods and probabilities using the Weibull 
plotting position method (Helsel et al., 2020). 

We also performed random forest analyses to identify variables of 
importance (i.e., burn severity, land-use, aspect, geology; Table A2) in 
driving post-fire streamflow changes. We performed two separate ana-
lyses, one for annual water yield and one for peak streamflow changes. 
We combined the data for both basins for each analysis. The explanatory 
variables came from GIS data layers, which were aggregated to a sub-
basin level using the ArcMap “Zonal Statistics as Table” tool to calculate 
the mean (for continuous data) or mode (for categorical data). Then we 
linked the streamflow data to the aggregated landscape and climate 
variables associated with each subbasin (Table A2). To numerically 
compare the burn severity across subbasins for the random forest 
analysis, a metric of relative burn severity was developed by averaging 
the wildfire pixels in the area of each subbasin, where 0 was unburned, 1 
was low severity, 2 was moderate severity, and 3 was high severity. 
Thus, the metric ranged from 0 to 3, with increasing values representing 
higher severities. 

The random forest analysis was performed using the ‘cforest’ func-
tion in the Party package in R (Hothorn et al., 2006; Strobl et al., 2008, 
2007) for both percent change in annual streamflow and percent change 
in maximum annual peak flow. Variable importance was determined 
using the permutation method to find the mean decrease in accuracy of 
the random forest model on the out-of-box data using the ‘varimp’ 

function. Analysis used 2000 trees, ‘mtry’ was set to 9, and the model did 
not use replacement when sampling the observations, as recommended 
by Strobel et al. (2007) for accurate variable importance measures. The 
subbasins upstream of the fire were removed for analysis. Due to the 
limited number of data points, the entire dataset was used for training. 
Model fit was determined using the out of box data to calculate a pseudo 
R2 value by using the ‘predict’ function from the Party package to 
calculate the sum of squares residuals. To investigate directionality of 
the driver variables, partial dependence plots were found for the five 
most important variables in each model using the pdp package in R 
(Greenwell, 2017). To minimize computational time, 15 equally spaced 
points were used for continuous variable plots. A second set of random 
forest models were created to look at mean burn severity in each sub-
basin based on the real burn severity wildfire maps. These models used 
the same procedure to the other models except in the burn severity 
random forest all the subbasins were retained in the analysis. 

3. Results 

3.1. Calibration 

The daily streamflow calibration for the North Santiam model had a 
mean Nash Sutcliffe efficiency coefficient (NSE) of 0.48 ± 0.19. This was 
slightly better than the streamflow calibration for the McKenzie Basin, 
which had a mean coefficient value of 0.40 ± 0.47 (Fig. 3). In the 
validation period, the North Santiam had a mean NSE of 0.35 ± 0.32 
while the McKenzie had a mean coefficient value of 0.56 ± 0.19 (Fig. 3). 
Although previous recommendations for modeling daily streamflow 
data have indicated a NSE above 0.50 as satisfactory and above 0.70 as 
good (Moriasi et al., 2015), these recommendations are principally for 
small, headwater catchment scale studies. Such studies typically only 
include a single basin at the outlet; however, our models included 6 to 
13 calibration points in each basin, making it challenging to achieve an 
overall NSE value above 0.7. Given the complexity of our study basins, 
we found these model fits satisfactory. See Table A1 for more detailed 
calibration results. 

3.2. Validation of wildfire module 

We validated our model outputs for the wildfire simulations by 
comparing predicted streamflow values with a year of observed 
streamflow from USGS gauges following the wildfires, using the most 
severely burned sub-catchment in each basin which had measured 
streamflow data available. We validated the outputs in the North San-
tiam Basin with data from subbasin 23, which had a burn severity of 
1.86 out of 3—a moderate to high burn severity sub-catchment. The 
observed annual water yield for the first year post-fire was 2,085 mm. 
Comparatively, the average predicted annual water yields were 1,449 ±
448 mm for the unburned scenarios and 1,644 ± 462 mm for the burned 
scenarios. While the model underestimated the actual annual water 
yield, the annual water yields (1960–2019) in the burned scenario were 
more similar to the observed data than the unburned scenario (Fig. 4). 
The average observed low flows (June through August) were 0.77 ±
0.54 mm d-1, while average low flows were 0.46 ± 0.30 mm d-1 for the 
unburned scenarios and 0.79 ± 0.48 mm d-1 for the burned scenarios. 
The observed peak flow for the first year post-fire, 103.2 mm d-1 

exceeded both model predictions. The mean predicted peak flow was 
34.6 ± 15.8 mm d-1 for the unburned scenarios and 50.4 ± 20.2 mm d-1 

for the burned scenarios. 
Comparatively, in the McKenzie, subbasin 65 had a relative burn 

severity of 0.35 out of 3, so it was less fire-affected overall. This was 
reflected in the smaller differences between the unburned and burned 
scenarios (Fig. 4). The observed annual water yield in the first post-fire 
year was 1,279 mm. This was slightly lower than our modeled annual 
water yield (1964–2019) of 1,313 ± 246 mm in the unburned scenario 
and 1,342 ± 248 mm in the burned scenario. Similarly, observed 
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average low flows (June through August) were slightly lower than both 
modeled scenarios. The observed mean low flows were 2.28 ± 0.81 mm 
d-1 while the unburned scenarios had a mean of 2.66 ± 0.57 mm d-1, and 
the burned scenarios had a mean of 2.74 ± 0.59 mm d-1. Peak flows, 
however, were better represented by the burned scenario. The peak flow 
for the observed data was 13.6 mm d-1 while the mean modeled peak 
flows were 10.1 ± 3.2 mm d-1 for the unburned scenarios and 12.5 ±
4.4 mm d-1 for the burned scenarios. 

3.3. Magnitude and range of wildfire effects 

Inclusion of the wildfire simulations in our models increased annual 
water yields in the North Santiam by an average of 14.6 % at the 
headwater scale and 8.0 % at the basin outlet scale. 

Comparatively, the wildfire simulations in the McKenzie Basin 
increased annual water yields on average by 10.5 % in the headwater 
sub-catchments and 2.2 % at the basin outlet (Table 5). While the 
wildfire simulations resulted in modest increases in annual water yields, 
there were much larger increases in peak streamflow. In the North 

Fig. 3. The location and fit of the (a) calibration data (2000 to 2019) and (b) validation data (1990 to 1999) for the North Santiam (upper) and McKenzie (lower) 
River basins. Each dot represents a location where we calibrated streamflow with the color and value representing the goodness of fit using the Nash Sutcliffe 
Efficiency Coefficient (NSE). 

Fig. 4. (a) Measured streamflow (USGS Gage 14182500) compared with the model results the same location (Subbasin 23) in the North Santiam for the unburned 
and burned scenarios. (b) Measured streamflow (USGS Gage 141631150) compared with the model results the same location (Subbasin 65) in the McKenzie for the 
unburned and burned scenarios. The colored bands represent the 50, 90, and 98th percentiles of model outputs of streamflow from the range of inputs of precipitation 
scenarios. The bottom panel shows the difference between the burned and unburned scenarios where the ribbon is bounded by the minimum and maximum change in 
streamflow for every week. 
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Santiam, peak streamflow was increased an average of 58.8 % in the 
headwater sub-catchments and 17.6 % at the basin outlet. In the 
McKenzie, the geometric mean of peak flows increased 95.0 % in the 
headwater sub-catchments and increased 24.9 % at the basin outlet. 
Statistically, from our linear mixed effects models, there was strong 

evidence (p < 0.001) that the wildfire simulation increased both the 
mean annual water yield and peak streamflow in both basins (Table 5). 
There was also strong evidence (p < 0.001) that there was an interaction 
effect between basin and wildfire for mean annual water yields at both 
scales and peak streamflow at the headwater scales, meaning that the 

Table 5 
Effects of wildfire on annual water yields and peak flows at different spatial scales for the North Santiam and McKenzie River Basins, Oregon. Significance of the effect 
of wildfire was determined using the Tukey multiple comparisons test with our linear mixed effects models.  

Streamflow parameter Scale Basin Scenario Mean 95% confidence interval Wildfire effect Basin wildfire effect 

Lower Upper t-value p-value F-value p-value 

Annual water yield (mm year− 1) Headwaters McKenzie Unburned 986 896 1077 40.9 <0.001 519 <0.001 
Burned 1090 1000 1180 

N Santiam Unburned 1287 1197 1376 68.7 <0.001 
Burned 1475 1386 1565 

Outlet McKenzie Unburned 1251 1185 1317 39.8 <0.001 1776 <0.001 
Burned 1278 1212 1344 

N Santiam Unburned 1167 1101 1232 65.4 <0.001 
Burned 1261 1195 1326 

Peak flow (mm day− 1) Headwaters* McKenzie Unburned 16.3 14.7 18.2 42.9 <0.001 124 <0.001 
Burned 31.8 28.6 35.4 

N Santiam Unburned 25.5 23.0 28.3 48.6 <0.001 
Burned 40.5 36.5 44.9 

Outlet McKenzie Unburned 9.69 8.61 10.8 11.6 <0.001 0.061 0.806 
Burned 12.1 11.0 13.2 

N Santiam Unburned 13.1 12.0 14.1 10.0 <0.001 
Burned 15.4 14.4 16.5 

Note. Wildfire Effect tests the difference in means between the unburned and burned scenarios. Basin-Wildfire Effect tests if there is an interaction between basin and 
wildfire, answering do the basins have different responses to fire. *Peak flows for the headwater were log10 transformed, so the mean shown is the geometric mean. 

Fig. 5. Flow duration curves in the McKenzie and North Santiam, Oregon at (a) the basin outlet and (b) for two selected high severity subbasins, 41 in the McKenzie 
and 14 in the North Santiam. The burned scenario is shown as a solid line and the unburned scenario as a dashed line. 
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effect of wildfire was different between basins. Similarly, the flow 
duration curves for each of the study basins, illustrated an increase in the 
infrequent, high flows, or the largest 5% of flows (Fig. 5). For example, 
the largest 5% of flows in the severely burned headwater catchments of 
the North Santiam increased by 37.0 %. Interestingly, the largest 5% of 
flows in the severely burned headwater catchments in the McKenzie 
Basin increased by 128 %. At the larger basin scale, the upper 5% of 
flows at the North Santiam Basin outlet increased 17.0 %, while in the 
McKenzie Basin they increased by 29.5 %. Flood recurrence intervals 
also showed increased high flows. For example, at the North Santiam 
Basin outlet, the streamflow for a 1-year flood was increased 12.5 % and 
the ~6-year flood was increased 20.0 %. At the McKenzie Basin outlet 
there was a 10.8 % increase in streamflow for the 1-year flood and 25.8 
% increase in the ~6-year flood. While these changes at the basin scale 
were notable, there were much larger increases in the magnitude of 1- 
and 6-year floods in the headwater sub-catchments that were burned at 
high severity (Fig. 6). For example, in the North Santiam in subbasin 14, 
the 1-year flood was increased by 45.5 % while the ~6-year flood was 
increased by 37.8 %. In subbasin 41 in the McKenzie, the 1-year flood 
was increased by 146 % while the ~6-year flood was increased by 156 
%. 

The flow duration curves from both basins, also illustrated that the 
burn scenario resulted in increases in summer low flows (Fig. 5). For 
example, in a severely burned subbasin in the North Santiam, the lowest 
5% of flows increased from 0 mm d-1 to 0.025 mm d-1, while the lowest 
5% of flows in a severely burned basin in the McKenzie increased by 144 
%. At the basin outlet of the North Santiam, the lowest 5% of flows 

increased by 179 %. However, at the outlet of the McKenzie Basin, the 
lowest 5% of flows increased by only 0.43 %. Overall, the effect of 
wildfire on annual water yields, peak flows, and low flows was most 
evident in headwater catchments and was dampened at the outlet of 
both basins (Fig. 7). 

3.4. Drivers of post-fire streamflow changes 

Our random forest model for annual water yields (pseudo R2 = 0.89; 
Fig. 8) indicated that burn severity was the most important variable for 
describing changes between the unburned and burned scenarios, ac-
counting for 52.4 % of model accuracy. Our model also indicated that 
annual precipitation was the second most important variable influ-
encing annual water yields, representing 16.7% of the model accuracy. 
Percent area burned was the third most important variable influencing 
annual water yields, accounting for 13.4 % of the model accuracy. Other 
important variables for annual water yield changes included vegetation 
type and aridity which accounted for 5.4 % of model accuracy. The 
remaining variables accounting for the last 12 % of the model accuracy. 

Our random forest analysis for peak flow changes found different 
driving factors than the analysis for annual water yields (pseudo R2 =

0.80; Fig. 8). Here, the wildfire characteristics, burn severity and percent 
area burned, were the most important variables. Burn severity accoun-
ted for 39.0 % of model accuracy with percent area burned accounting 
for 21.7 %. Other important variables for peak streamflow changes 
included aridity, soil type, and geologic province, which were respon-
sible for 20.7 % of model accuracy. The remaining variables accounted 

Fig. 6. Flood recurrence intervals at the outlet (a) and two severely burned subbasins (b) subbasin 41 in the McKenzie and 14 in the North Santiam, Oregon for the 
burned and unburned scenarios. 
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Fig. 7. Percent change between the unburned and burned scenarios for (a) annual water yield and (b) peak flows at the outlet and headwater scales for the McKenzie 
and North Santiam basins, Oregon. Data presented is across all the subbasins and all the precipitation scenarios. 

Fig. 8. Relative importance of factors used to determine the change between unburned and burned scenarios in peak flows (yellow) and annual water yields (blue) in 
the North Santiam and McKenzie basins, Oregon determined by random forest analysis. 
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for the last 18.6 % of model accuracy. 

4. Discussion 

As expected, the results from our model indicated that burn severity 
and percent area burned were generally the most important factors for 
projecting both peak flow and annual water yield changes after wildfire 
in the McKenzie and North Santiam basins, Oregon (Fig. 8). This finding 
is consistent with previous models, which indicated that burn severity or 
area burned are key predictors of post-fire peak flow responses 
(Kinoshita et al., 2014) or annual water yields (Feikema et al., 2013). 
Several empirical studies have also illustrated the importance of burn 
severity or the proportion of catchment area burned for driving the 
streamflow response. For example, both burn severity and percent area 
burned were positively correlated with increased peak flows, low flows, 
and runoff ratios from 82 burned watersheds in the western US (Saxe 
et al., 2018). Similarly, changes in annual streamflow were related to 
high burn severity in 25 catchments in the Pacific Northwest using five 
years of both pre-fire and post-fire data (Hallema et al., 2017a). Elevated 
streamflow after wildfires is often attributed to decreased evapotrans-
piration and changes to soil hydraulic properties, resulting in a greater 
proportion of precipitation ending up in streams (Ebel et al., 2012; Ma 
et al., 2020; Moody et al., 2016, 2008). For instance, seven watersheds in 

New Mexico exhibited elevated post-fire runoff ratios in areas where 
hillslope flow paths were burned at high severity (Moody et al., 2008). 
However, while many studies have found a linkage between burn 
severity and percent area burned and the resulting hydrologic response, 
wildfire effects have been highly variable and are likely due to catch-
ment differences in geophysical properties and climate (Kinoshita et al., 
2014; Saxe et al., 2018). Better understanding of how these differences 
affect post-fire streamflow changes is key to identifying areas vulnerable 
to post-fire effects, which will help inform land management decisions 
both before and after fire. 

Indeed, the proportional changes in annual water yield due to 
wildfire in our two study basins were also related to catchment char-
acteristics and climatic variables. Specifically, annual precipitation was 
the second most important variable in our random forest analysis for 
describing the change in annual water yield. The largest annual water 
yield gains generally occurred during wet years (Fig. A1). However, 
drier years had greater percent changes in annual water yields between 
the burned and unburned scenarios compared to wetter years (Fig. 9). 
We posit this was likely due to a greater proportion of the gross pre-
cipitation allocated to evapotranspiration (ET) in the unburned scenario 
for drier years. Several empirical studies have also identified precipita-
tion as an important driver of post-fire annual water yields. For example, 
when post-fire streamflow was separated using climate elasticity models 

Fig. 9. Partial dependence plots for the five most important variables from the annual water yield random forest model for the North Santiam and McKenzie basins, 
Oregon. Plots show the relationship between the variable and relative annual water yield change between the burned and unburned scenarios. 
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for a burned watershed in California, streamflow was reduced 102 % due 
to precipitation but increased 38 % due to fire (Hallema et al., 2017b). 
Similarly, annual water yields increased after wildfire in six paired 
catchments in California, especially in years with average or above 
average precipitation (Bart and Hope, 2010). A review of 162 large 
watersheds that experienced land-use changes also indicated that wa-
tersheds receiving less annual precipitation were more sensitive to water 
yield changes after the disturbance (Li et al., 2017). 

While fire characteristics and annual precipitation were the primary 
drivers of post-fire annual water yields—explaining 82 % of the varia-
tion in annual water yield changes—the random forest model also 
identified vegetation type and aridity as important variables (Fig. 8). 
Specifically, partial dependence plots indicated greater changes in 
annual water yields after fire in less arid areas and in catchments 
dominated by Pacific silver fir trees (Fig. 9). This was expected as these 
areas tended to have greater rates of ET during the pre-fire period. After 
wildfire, these areas likely experienced greater decreases in ET due to 
vegetation loss, leading to greater post-fire changes in runoff and 
streamflow. This is consistent with a post-fire study in California, where 
higher density forests had larger changes in post-fire ET, with the 
greatest decreases occurring in evergreen forests compared to other land 
use types (Ma et al., 2020). A number of general land use studies have 
also found that catchments draining conifer forests exhibited the 
greatest increases in water yields after disturbance. For example, a 

paired watershed study from the Pacific Northwest and Eastern US 
examined streamflow changes following harvesting during the wet, 
moist season; they found the greatest increases in streamflow occurred 
in hemlock forests followed by mixed conifers, redwoods, and hard-
woods (Jones and Post, 2004). Similarly, a review of 145 deforestation 
and afforestation studies investigated the estimated changes in annual 
water yield for seven different kinds of vegetation types—the greatest 
changes occurred in conifer forests while the smallest changes in annual 
water yields occurred in scrub dominated catchments (Sahin and Hall, 
1996). 

Comparatively, peak flow changes were likely due to fire effects on 
soil hydraulic properties, particularly infiltration. Besides fire severity 
and proportion of catchment burned, aridity was also identified as an 
important driver of wildfire-caused peak flow changes (Fig. 8). Partial 
dependence plots indicated that more arid areas led to higher peak flow 
changes with wildfire, which was opposite to the relationship between 
aridity and annual water yield changes (Figs. 9 and 10). Greater peak 
flows in higher aridity catchments was likely due to aridity acting as a 
high order control on the curve number in the model, which controls the 
proportion of runoff. This was particularly interesting because it was 
consistent with several recent empirical studies. For example, in a study 
of two burned basins with differing aridities in Victoria, AUS, the more 
arid basin had infiltration rates 333-times lower and runoff ratios 7- 
times greater than a wetter basin (Noske et al., 2016). Similarly, in 

Fig. 10. Partial dependence plots for the five most important variables from the peak streamflow random forest model for the North Santiam and McKenzie basins, 
Oregon. Plots show the relationship between the variable and relative peak flow change between the burned and unburned scenarios. 
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five burned plots from Victoria, AUS there was a power relationship 
between aridity and surface runoff ratio, with runoff ratios two orders of 
magnitude greater in the driest site compared to the wettest site (Van der 
Sant et al., 2018). 

Besides aridity, infiltration is often also strongly related to soil type, 
which was determined to be the fourth most important factor describing 
peak flow changes in our study (Fig. 8). Partial dependence plots pre-
dicted the largest peak flow changes in catchments with soil types with 
low rock fragments and carbon contents (Fig. 10, A2–A3). The inverse 
relationship between rock content and peak flows was expected as 
increased preferential flow—where water is transported to depth in 
soils—is known to occur in coarser soils resulting in lower runoff re-
sponses (Hartmann et al., 2020). Several empirical studies have also 
illustrated the importance of soil properties for post-fire infiltration and 
runoff changes. For example, an examination of the wettability of 
different sized soil aggregates from alkaline, calcareous loamy soils in 
Spain showed that the larger aggregates (1–2 mm) had low levels of 
hydrophobicity and retained macropores after burning, resulting in less 
runoff (Mataix-Solera and Doerr, 2004). Additionally, an erosion lag was 
observed for soils with high gravel contents in a study of seven burned 
sites in New Mexico, which was attributed to an armoring effect of 
gravel, increasing infiltration and preventing surface runoff (Ebel et al., 
2018); however, unfortunately, armoring is not a process explicitly 
represented in the model. Additionally, gravel does not always lead to 
decreased runoff—during the first storm after a wildfire in California, 
ash filled macropores in gravelly soils, leading to increased runoff ratios 
(Onda et al., 2008). Our wildfire simulations did not include ash dy-
namics, which is likely why we did not observe such an effect. 

The inverse relationship between carbon content and peak flow was 
counter to our expectations. Generally, catchments with greater soil 
carbon retain and store more water (Hudson, 1994). However, our 
model did not change the soil carbon in the wildfire scenarios, so sites 
with high soil carbon likely continued to retain the soil water, limiting 
surface runoff and peak flows. This is counter to what several empirical 
studies have found. For example, in Northern Mongolia, soil volumetric 
water content was reduced in soils after wildfire, Kopp et al. (2017) 
hypothesized that this was due to loss of the organic layer, increasing 
water movement through preferential flow paths and increasing 
stormflow. Similarly, water retention was greatly decreased for soils on 
Southern slopes with higher organic matter contents following a wildfire 
in Colorado (Ebel, 2012). 

Lastly, geologic province was also identified as an important factor 
for peak flow changes (Fig. 8). This result was not too surprising. For 
unburned conditions at our sites, surface runoff is extremely limited and 
most peak flows are generated by subsurface stormflow. While we did 
observe an increase in runoff with wildfire, we would still expect those 
subsurface processes to remain important. Partial dependence plots 
identified the smallest post-fire peak flow changes for High Cascades 
geology while Western Cascades geology showed the greatest changes 
(Fig. 10). High Cascades province has highly permeable rocks, lacks 
drainage networks, and is primarily spring fed, with groundwater transit 
times between 3 and 26 years (Jefferson et al., 2007, 2006). Compara-
tively, Western Cascades is dominated by low permeability rocks, steep 
slopes, and streamflow is primarily from shallow subsurface flows 
(Jefferson et al., 2007, 2006). These differences are likely leading to 
differing peak flow responses after wildfire. This was also observed in a 
Northern California modeling study which tested how wildfire location 
impacted runoff and infiltration; the greatest changes occurred in areas 
with sleep, complex topography in areas with low permeability (Maina 
and Siirila-Woodburn, 2020). Additionally, the long flow path time-
scales in the High Cascades likely helps to delay or mute the effect of 
wildfire entirely. This was noted for two burned catchments in Southern 
California where end member mixing analysis was used to investigate 
the subsurface response to wildfire (Jung et al., 2009). The basin with 
greater groundwater contributions prior to the fire showed a more 
muted response to wildfire, with surface runoff only increasing by a 

mean of 2.8 %, comparatively, surface runoff increased by a mean of 
41.4 % in the basin where flow is split evenly between soil water and 
groundwater. 

Wildfire effects on streamflow were substantially greater at the 
headwater scale than the basin outlet. Our models predicted annual 
water yield changes between − 0.25–155 % for headwater subbasins and 
1.28–23.4 % at the basin scale (Fig. 7). For basins less than 10,000 
ha—the approximate area of our modeled headwater sub-
basins—measured changes in annual streamflow have ranged from 20 to 
450 % in empirical studies (Campbell et al., 1977; Hallema et al., 2017a; 
Helvey, 1980; Lane et al., 2006; Loáiciga et al., 2001; Owens et al., 2013; 
Scott, 1997; Wine and Cadol, 2016) and 1.2–74.6 % in modeling studies 
(Havel et al., 2018). Similar to our model results, wildfire effects 
observed in empirical studies have tended to be smaller at larger basin 
scales (>10,000 ha), ranging from no change up to a 38 % increase in 
annual water yields in basins up to 122,300 ha in area (Bart, 2016; Bart 
and Hope, 2010; Hallema et al., 2017a; Lane et al., 2006; Loáiciga et al., 
2001; Owens et al., 2013; Scott, 1997; Wine and Cadol, 2016). In other 
modeling studies, post-fire annual water yields have been estimated to 
increase 0.7–63.7 %, although most models have projected annual water 
yield increases of less than 10 % (Basso et al., 2020; Havel et al., 2018; 
Loiselle et al., 2020; Morán-Tejeda et al., 2015). 

Comparatively, peak flows in our models were predicted to change 
between − 0.78–520 % at the headwater subbasin scale and − 1.1–50.9 
% at the larger basin scale (Fig. 7). Previous modeling studies have also 
projected a substantial range in potential peak flows responses, ranging 
between 120 and 2,725 % for basins less than 2,500 ha (Seibert et al., 
2010; Sidman et al., 2015). These model projections seem to align with 
empirical studies, which have also observed substantial variability in 
post-fire peak flows. For example, in small basins (less than 10 ha), in-
creases in post-fire peak flows ranged between 0 and 14,200 % 
(Campbell et al., 1977). In moderate to larger basins (>300 ha) obser-
vations of peak flow increases have ranged from 5 to 850 % (Mahat 
et al., 2016; Niemeyer et al., 2020; Scott, 1997; Soulis et al., 2012). 
Indeed, much of the variability in both model and empirical results 
during the immediate post-fire years is likely related to the temporal 
alignment of precipitation intensity, precipitation duration, soil water 
content, and soil hydraulic properties (Moody and Martin, 2001; 
Thomas et al., 2021). However, in our analysis of post-fire flow drivers, 
we focused primarily on long-term climate and landscape conditions, so 
effects of these short-scale processes were not considered. Additionally, 
in catchments with reservoirs, peak flow responses may be mediated by 
water managers decreasing reservoir outflows to reduce the potential for 
downstream flooding. 

Across the range of precipitation scenarios our model was not always 
able to capture post-fire observed peak flows, particularly in the timing 
of the peaks (Fig. 4). This was likely because the SWAT model was not 
originally designed for predicting wildfire effects and was not able to 
capture all of the physical landscape changes that occur with wildfire. 
While our fire module was developed to improve existing methods of 
representing fire in the SWAT model, more work is needed to refine the 
representation of wildfire effects on the physical processes within the 
model. For instance, in building the fire simulation we changed the land 
use to account for the decrease in ET often observed post-fire. In 
catchments burned at high severity, it is reasonable to assume ET rates 
will decrease due to the loss of vegetation (Ma et al., 2020). However, in 
catchments burned at low to moderate burn severity, ET may remain 
unchanged (Poulos et al., 2021) or even increase post-fire due to 
compensatory transpiration from the remaining vegetation (Nolan et al., 
2014). Another way to represent post-fire ET changes would have been 
to adjust the leaf area index and rooting depth within the model, how-
ever these parameters were found to be insensitive in our models. Lastly, 
future studies might consider using more complex runoff representa-
tions like the Green-Ampt equation to more accurately represent infil-
tration excess runoff or SWAT-VSA to more accurately represent the 
effects of topographic convergence on runoff processes (Easton et al., 

K.A. Wampler et al.                                                                                                                                                                                                                            



Journal of Hydrology 621 (2023) 129585

15

2008). Future refinements of hydrologic models to more accurately 
represent the effects of wildfire on vegetation and soil characteristics 
may provide more accurate post-fire streamflow predictions. 

Additionally, we noted poor NSE values for many of the smaller 
headwater catchments (Table S1). Fortunately, these were principally 
located in unburned catchments, upstream of our area of focus and were 
not included in our analysis. The poor model simulations in these 
catchments were likely due to the unique and complex hydrologic flow 
paths in the catchments in this region—streamflow is often discontin-
uous with substantial groundwater contributions, which are poorly 
represented in all hydrologic models. 

5. Conclusions 

In our study, we modeled two recently burned basins in Oregon to 
project the range of effects on streamflow both at the headwater and 
downstream scale. Post-fire increases in annual water yields, peaks 
flows, and low flows were projected to be greatest in headwater catch-
ments, but more muted at the downstream basin scale. The post-fire 
hydrological response was most strongly related to burn severity, 
catchment area burned, and annual precipitation. However, catchment 
aridity, vegetation type, soil type, and geology were also important 
drivers. The influence of a broad range of burn characteristics, catch-
ment characteristics, and climatic factors highlights the substantial un-
certainty that remains regarding the initial hydrologic responses to 
wildfire. 

As the occurrence of large, high severity wildfires has increased in 
many regions across the planet, it is increasingly critical to improve 
hydrologic model projections. Post-fire shifts in water quantity and 
quality can create substantial and costly challenges for downstream 
drinking water treatment and aquatic ecosystem health. Unfortunately, 
the majority of hydrologic models were not originally developed to 
include the unique impacts of wildfire. As such, we require additional 
efforts to continue to improve model projections of post-fire changes in 
hydrologic processes. Future research should leverage unfortunate, but 
rare, opportunities to quantify post-fire hydrologic responses to provide 
improvements to model parameterization and calibration. Empirical 
data may also be used to test results in real world conditions, since 
modeling is a simplified representation of the real world and cannot 
encompass all of the complexities of a landscape. 
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