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ABSTRACT

Increasing occurrence of large and severe wildfires represents a growing threat to forested watersheds and the
many ecosystem services they provide. Past research has shown that wildfires can cause substantial increases in
peak flows and annual water yields, leading to potential water quality concerns and land and water management
challenges. However, responses have been variable, and there have been few studies at large basin scales, leading
to uncertainties about post-fire hydrologic responses. To address these uncertainties, we projected the effect of
three large wildfires (>70,000 ha) on streamflow in two important forested watersheds in the Cascade Range of
Oregon, US. We modeled the streamflow response using the Soil and Water Assessment Tool (SWAT) model,
calibrated on data from prior to the wildfires. We modified model parameters to represent the impacts of the
wildfires based on burn severity maps. Burned and unburned scenarios were compared using random forest
models to identify drivers of increased annual water yields and peak flows. Post-fire annual water yield changes
were controlled by burn severity, annual precipitation, area burned, aridity, and vegetation type, while post-fire
peak flow changes were controlled by burn severity, area burned, aridity, soil type, and geologic province. We
also found that post-fire increases in annual water yields, peak flows, and low flows were greatest at the
headwater scale but were more muted at the downstream basin scale. Our work provides valuable insights into
the range of potential post-fire streamflow changes at the headwater and larger basin scale, which is becoming
increasingly critical for effective forest and water management decisions.

1. Introduction

risks that could negatively impact society (Martin, 2016; World Eco-
nomic Forum, 2015). Therefore, it is critical to improve our under-

Forested basins are critical sources of drinking water, providing
water supplies to almost one-third of the world’s largest cities and two-
thirds of cities in the United States (US) (Committee on Hydrologic
Impacts of Forest Management, 2008; Dudley and Stolton, 2003).
Healthy forests are naturally effective at filtering and storing water,
which are services that save an estimated $25.9-billion dollars world-
wide every year (Costanza et al., 1997). However, healthy source water
supplies are increasingly at risk due to growing pressures from urbani-
zation (Paul and Meyer, 2001; Walsh et al., 2005), deforestation (War-
ziniack et al., 2017), climate change (Delpla et al., 2009; Murdoch et al.,
2000), extreme weather events (Khan et al., 2015), forest pathogens
(Bladon et al., 2019), pest outbreaks (Kurz et al., 2008; Mikkelson et al.,
2013), and wildfire (Bladon et al., 2014; Hohner et al., 2019). As a
result, water crises, or significant issues with streamflow and water
quantity, have been identified as representing one of the greatest global

standing of the variability and drivers of source water changes from
these growing pressures.

In particular, there is increasing concern about the effects of wildfire
on surface source water supplies (Bladon, 2018; Hallema et al., 2018;
Martin, 2016; Robinne et al., 2021) due to recent and dramatic increases
in the timing, extent, and severity of wildfire activity in many regions of
the world (Flannigan et al., 2009; Moritz et al., 2012; Reilly et al., 2017).
Historical evidence and modeling efforts suggest that we will continue to
observe years with elevated fire danger, contributing to longer fire
seasons and increased burned area (Abatzoglou et al., 2021; Flannigan
et al., 2013; Murphy et al., 2018). In part, the increase in area burned is
attributable to warmer temperatures, earlier spring snowmelts,
increased fuel aridity, and greater fuel accumulation (Abatzoglou et al.,
2018; Marlon et al., 2012; Westerling, 2016). Indeed, in recent years,
many areas around the globe have experienced some of their most
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destructive wildfire seasons in recorded history. For example, in 2020,
2.9-million ha burned in California, Washington, and Oregon alone—29
% of the total area burned in the US that year. Across the entire US, the
area burned in 2020 was 2.1-times greater than the long-term average
(Congressional Research Service, 2021; Geographic Area Coordination
Center, 2020; National Interagency Fire Center, n.d.). Similarly, the
2019-2020 wildfire season in Australia burned almost 19-million ha,
consuming ~21 % of the temperate forest biome in that region, pri-
marily in New South Wales and Victoria (Boer et al., 2020; Filkov et al.,
2020). In 2017 and 2018, wildfires in British Columbia, Canada burned
3.3- to 3.7-times more area than the 10-year average (2009-2019) (BC
Wildfire Service, n.d.). In Europe, many countries, including Spain,
Italy, Portugal, Sweden, and the UK have all experienced notable
wildfire seasons in recent years (Henley and Jones, 2019; San-Miguel-
Ayanz et al., 2020).

Recent empirical studies have illustrated that wildfires can cause
large and long-lasting effects on a wide range of hydrological processes
(Niemeyer et al., 2020; Poon and Kinoshita, 2018; Rhoades et al., 2019).
For example, wildfires can impact soil hydraulic properties, reducing
infiltration rates and changing water partitioning between surface and
subsurface flow (Ebel and Moody, 2017; Moody et al., 2016; Moody and
Ebel, 2014). Additionally, the presence of ash, water repellent layers in
the soil, surface sealing, and reduced ground cover can contribute to
increased occurrence of surface runoff (Balfour et al., 2014; Bodi et al.,
2012; Certini, 2005; Larsen et al., 2009; Lavee et al., 1995). Combined
with reduced interception losses and higher net precipitation (Kusaka
et al., 1983; Ma et al., 2020; Stoof et al., 2012; Williams et al., 2019),
these effects often lead to increased annual water yields and peak flows,
and changes to the timing of water availability, with effects potentially
lasting for multiple decades (Coombs and Melack, 2013; Hallema et al.,
2017a; Niemeyer et al., 2020; Wagenbrenner et al., 2021).

Post-fire changes to annual water yields across a number of regions
and basin sizes have been observed to range from no change up to a 450
% increase (Bart, 2016; Bart and Hope, 2010; Campbell et al., 1977,
1977; Hallema et al., 2017b; Helvey, 1980; Loaiciga et al., 2001; Mahat
etal., 2016; Niemeyer et al., 2020; Owens et al., 2013; Scott, 1997; Wine
and Cadol, 2016). Wildfire can also affect both peak flows and low flows.
Peak and storm flows have been found to increase between 20 % and
290 % in Alberta, CAN, Washington, US, and South Africa (Mahat et al.,
2016; Niemeyer et al., 2020; Scott, 1997), while low flow increases of 40
% to 1090 % have been measured in California and Washington, US and
Alberta, CAN (Kinoshita and Hogue, 2015; Mahat et al., 2016; Niemeyer
et al., 2020).

Shifts in the streamflow regime can have substantial impacts on
aquatic ecosystems and downstream water supply. For example,
elevated low flows, which are critical for aquatic ecosystem habitat,
could help maintain cool stream temperatures and expand fish and other
species’ habitats during the critical summer months (Bradford and
Heinonen, 2008; Mayer, 2012). Similarly, increased low flows could
potentially provide additional water supplies to downstream commu-
nities during the summer period, which is often the period of highest
water demand. Alternatively, post-fire increases in peak flow can lead to
increased flooding and debris flow events (Moody and Ebel, 2012; Neary
et al.,, 2003; Wall et al., 2020), increased water quality concerns like
sediment, nutrients, and metals (Bladon et al., 2008; Emelko et al., 2016;
Smith et al., 2011), and greater and more costly challenges for drinking
water treatment (Emelko et al., 2011; Hohner et al., 2019).

However, there remains a lot of uncertainty about the post-fire hy-
drologic and water quality effects due to the substantial variability in
responses as a result of site-specific controlling factors. For example,
previous studies have identified burn severity (Rhoades et al., 2011;
Rust et al., 2019), percent area burned (Rhoades et al., 2011), post-fire
precipitation (Mast et al., 2016; Murphy et al., 2015), slope (Moody
et al., 2013; Shakesby, 2011), aspect (Ebel, 2013), and aridity (Rust
et al., 2019; Sheridan et al., 2015; Van der Sant et al., 2018) as potential
controls on the streamflow or water quality response. However, little
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work has been done comparing the importance of these different factors
to identify principal drivers, especially across scales from headwaters to
downstream basin outlets. This type of information will facilitate
improved policy and land management decisions to mitigate effects on
source water supplies both before and after wildfires (Moody et al.,
2013).

While previous studies have found increases in streamflow after
wildfire, we have a poor understanding of the range of effects, partic-
ularly in larger basins (Emmerton et al., 2020; Hallema et al., 2017a;
Shakesby, 2011; Wu et al., 2021). This is partially due to the random
nature of wildfires, which makes tightly controlled experiments chal-
lenging. Thus, models provide an opportunity to make projections of the
magnitude of effects and assess various post-fire scenarios. One of the
major advantages of a modeling approach is its ability to simplify
complex systems (Mirchi et al., 2010). This provides a cost- and time-
effective way to generate high-frequency, continuous data (Borah and
Bera, 2004; Lund and Palmer, 1997). Models also allow for standardized
comparisons of future conditions and alternative scenarios (Borah and
Bera, 2004; Lund and Palmer, 1997). Critics may argue that simplifi-
cation renders model outputs of little value due to model assumptions
and uncertainty and, indeed, some models should not be used to provide
quantitative results. However, the reduced complexity makes models
extremely useful for hypothesis development and testing, where those
hypotheses can be field-tested in complex systems (Grayson et al.,
1992). Additionally, for wildfire-specific studies, the ability of a model
to provide unburned and burned outputs for the same spatial and cli-
matic conditions overcomes one of the major challenges in wildfire
research (Ebel and Mirus, 2014).

Several hydrologic models have previously been modified to inves-
tigate post-wildfire hydrologic responses (Ebel et al., 2023), including
WEPP (Dobre et al., 2022), the McGuire-Rengers model (McGuire et al.,
2017; Rengers et al., 2016), and the Soil and Water Assessment tool
(SWAT) (Havel et al., 2018; Loiselle et al., 2020). However, many
models, like WEPP, the McGuire-Rengers model, or RHESSys, are con-
strained to hillslope to small basin scales, and are rarely used to model
wildfire effects at scales larger than 5 km? (Ebel et al., 2023). Compar-
atively, the SWAT model is a time-continuous, semi-distributed, process-
based model that enables projections of streamflow at a river basin scale
(Neitsch et al., 2011). Post-wildfire hydrologic modeling with SWAT has
been completed for catchments in the Western US, Canada, Spain,
Portugal, and Brazil (Basso et al., 2020; Loiselle et al., 2020; Moran-
Tejeda et al., 2015; Rodrigues et al., 2019). These modeling efforts have
projected increases in streamflow of 8 to >500 % at the subbasin scale
(~5-270 km?; Basso et al., 2020; Havel et al., 2018; Loiselle et al., 2020)
and 2.4 % at the larger watershed scale (1500 km? Moran-Tejeda et al.,
2015). Additionally, models have illustrated relationships between
streamflow responses and both area burned (Havel et al., 2018; Rodri-
gues et al., 2019) and burn severity (Loiselle et al., 2020), which is
consistent with empirical studies.

The objective of our study was to provide additional insights into the
potential effects of large-scale wildfire on streamflow in two basins in
the Pacific Northwest by using a modeling approach. Specifically, we
sought to answer the following questions for key source water catch-
ments on the west slopes of the Cascade Range in Oregon, US: (a) How
does wildfire affect peak flows and annual water yields at the subbasin
and basin scale? (b) How does watershed scale affect the magnitude of
post-fire streamflow changes? (c) What are the principal drivers of dif-
ferences in post-fire streamflow responses at the sub-catchment scale?

2. Materials and methods
2.1. Study area
Our study area included two large basins on the west slopes of the

Cascade Range in Oregon, USA (Fig. 1). Specifically, we modeled the
North Santiam River Basin (44°47'N, 122°45'W), which supplies
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Fig. 1. (a) Map of land uses in the North Santiam (top) and McKenzie (bottom) basins in Western Oregon, USA. Important basins referenced in the results are labeled
and outlined in red. (b) Map of the fire perimeters and soil burn severities for the Beachie Creek (top left) and Lionshead (top right) fires in the North Santiam basin
and the Holiday Farm wildfire in the McKenzie basin, which burned in 2020 in Oregon, USA. (c) Locations of hydrometric and precipitation data used in the model

calibrations.

drinking water to ~200,000 residents in the Salem, OR area. We also
modeled the McKenzie River Basin (44°40'N, 122°57'W), which pro-
vides drinking water to ~200,000 residents in the Eugene, OR area. Both
basins have steep, forested uplands where the headwaters to the North
Santiam and McKenzie Rivers originate. Generally, both rivers flow west
to agricultural land with little relief. Both basins are within a Mediter-
ranean climate with cool, wet winters and dry, warm summers (Kottek
et al., 2006; Snyder et al., 2002). The basins receive an average of 2,114
mm of precipitation annually—although, due to orographic effects, it
ranges from approximately 1,000 mm to 3,000 mm (PRISM Climate
Group, 2012). The basins are rain dominated below 400 m, mixed rain
and snow between 400 and 1,200 m, and snow dominated above 1,200
m. The average annual water yield in the McKenzie at the Hayden Bridge
treatment plant is 1,447 mm (2007-2019, USGS site 14164900).
Average annual water yields in the North Santiam near the outlet are
1,830 mm (1960-2019, USGS site 14183000). Annual 30-year normal
air temperatures range from minimums of —4.0-5.9 °C in the winter to
maximums of 6.9-17.3 °C in the summer (PRISM Climate Group, 2012).
Approximately 80 % of both basins are forested land, comprised mainly
of Douglas-fir (Pseudotsuga menziesii), Western hemlock (Tsuga hetero-
phylla), and Pacific silver fir (Abies amabilis). While our two study basins
have many similarities, they also have slight differences in land use,
geology, topography, and area (Table 1). Additionally, due to a large

proportion of High Cascade geology, the McKenzie River Basin has many
influential springs, which may contribute as much as 80 % of the
discharge during the summer low flow period (Jefferson, 2006).

Wildfires in both basins have been relatively infrequent, with a total
area burned from 1984 to 2019 of 14,746 ha in the North Santiam and
31,534 ha in the McKenzie. However, in August to October 2020,
wildfires in the two basins burned a combined area of 146,580 ha, which
was ~3.2-times greater than the total area burned from 1984 to 2019.
Specifically, the Beachie Creek and Lionshead wildfires burned ~51 %
of the North Santiam River Basin, with 67 % of the Beachie Creek fire
and 45 % of the Lionshead fire burned at moderate to high severity
(Table 2). Comparatively, the Holiday Farm fire burned ~18% of the
McKenzie river basin at slightly higher severity with ~77 % of the area
burning at moderate to high severity. As such, we sought to model the
2020 Oregon wildfires to provide insights into the potential range of
streamflow responses and to identify dominant drivers of variability in
post-fire streamflow.

2.2. Model description

To model the streamflow response to wildfire, we used the Soil and
Water Assessment Tool (SWAT 2012, rev. 664). We chose the SWAT
model because of its ability to simulate hillslope runoff processes,
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Table 1

Characteristics of the study basins, the North Santiam and McKenzie, located in

the Western Cascade Range in Oregon, USA.

Study Watershed
Parameter N. Santiam McKenzie
Major Land Forest-Evergreen (80%), Forest-Evergreen (81%), Range-
Uses Range-Brush (12%), Hay Brush (8.2%), Southwestern US
(1.7%), Range-Grasses (1.4%) (Arid) Range (3.6%) Range-
Grasses (2.0%)
Land
Ownership
Public 70% 69%
Private 30% 31%
Geology
Geologic Little Butte Volcanics (30%), Little Butte Volcanics (32%),
Group Quaternary surficial deposits Quaternary surficial deposits
(27%), Late Western Cascade (23%), Late High Cascade
Volcanics (18%), Late High Volcanics (21%), Late Western
Cascade Volcanics (17%) Cascade Volcanics (14%),
Primary Basalt (49%) and Sand (17%) Basalt (66%) and Sand (15%)
Rock Type

Soils Textures

Silty Clay Loam, Clay Loam
and Cobbly Loam

Silty Clay Loam, Clay Loam and
Cobbly Loam

Elevation
Minimum 45 m 89 m
Mean 899 m 974 m
Maximum 3170 m 3138 m
Max Slope 69.8° 74.2°
Mean Slope 16.2° 15.6°
Watershed 175,300 296,873
Area (ha)

streamflow, and in-stream cycling of water quality parameters. SWAT is
a physically-based, basin-scale, hydrologic model developed by the US
Department of Agriculture. Basins are divided into sub-basins based on
topographic maps and further divided into hydrologic response units
(HRUs) based on land use, soil, and slope. Climate data is input into the
model, which is used to calculate the water balance in each HRU,
routing water, nutrients, and sediment through the basin (Gassman
et al., 2007). SWAT was originally developed to model hydrology and
crop growth in agricultural settings and has been modified to incorpo-
rate forested environments; however, the model does not have a built-in
wildfire module. Thus, to simulate wildfire we modified individual pa-
rameters in the model source code (see section 2.4) to represent ex-
pected changes to the landscape and hydrology.

We constructed the models using the ArcSWAT (2012.10.5.21)
interface with a digital elevation model (30 m resolution; U.S. Geolog-
ical Survey, 2000), STATSGO?2 soils data (30 m resolution; Natural Re-
sources Conservation Service, 2006), and the 2016 National Land Cover
Database (30 m resolution; Yang et al., 2018). We also used a 1/24
degree resolution downscaled global climate model for minimum and
maximum daily air temperatures, average daily solar radiation, average
daily wind speed, and average daily relative humidity from 1950
through 2019 (Abatzoglou and Brown, 2012). The best climate model
for each variable was chosen by comparing the modeled climate vari-
ables to data from nearby meteorological stations (Table 3). Due to the
importance of precipitation in modeling streamflow and the difficulty of
modeling it at a daily scale, we used observed precipitation data from
1960 to 2019 from various publicly available sources (Daly et al., 2020;

Table 2
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National Climatic Data Center, n.d.; Natural Resources Conservation
Service Oregon, n.d.; The University of Utah, n.d.). We used data from
13 precipitation stations in the North Santiam basin and 21 precipitation
stations in the McKenzie basin (Fig. 1). Precipitation was gap-filled using
the hyfo package (Xu, 2020) in R.

In building the models, the basin outlet was set at the drinking water
intakes for the cities of Salem (North Santiam) and Eugene (McKenzie).
The Detroit Reservoir in the North Santiam Basin and the Blue River and
Cougar Reservoirs in the McKenzie Basin were added into the model.
This included setting up the reservoirs using the basin area and volume
of both the emergency and principal spillways. We also input daily
reservoir outflow data to the model to describe the daily outflow from
each of the reservoirs (U.S. Army Corps of Engineers, n.d.). Model setup
resulted in 125 subbasins (defined by SWAT as a first level subdivision of
watersheds based on surface topography) in the North Santiam and 110
subbasins in the McKenzie Basin. The subbasins were then further
divided into HRUs, where each HRU had a single slope class, soil type,
and land use. As a compromise between data resolution and computa-
tional loads, we specified 15 % threshold values for slope, soil, and land
use, where areas below those thresholds were dissolved into the existing
slope classes, soil types, and land uses (Her et al., 2015). Any areas
within each basin that were classified as water (i.e., SWAT model land
use class “WATR”) were retained as water in the model. This resulted in
1,112 HRUs for the North Santiam and 973 HRUs for the McKenzie
Basin. Lastly, to account for inputs to streamflow from springs in the
McKenzie, we included seven point sources for spring water discharge to
subbasins using an average annual discharge of >0.85 m® s~1, which
was based on estimates by Jefferson et al. (2006).

2.3. Model calibration

For model calibration, we used the SWAT-CUP program (version
5.1.1) with the SUFI-2 method. Calibration was performed using a
parallel processing program, allowing the simulations to run simulta-
neously on multiple cores, shortening the calibration process (Du et al.,
2020). We used a warm-up period of four years and ran the model at a
daily time step. Both models were calibrated for discharge from 2000 to
2019 using seven monitoring points in the North Santiam and 13
monitoring points in the McKenzie. Validation was performed from
1990 to 1999 using six monitoring points in the North Santiam and nine
monitoring points in the McKenzie. Both models were calibrated for
streamflow and sediment, while we only present streamflow results

Table 3

Climate models used in our SWAT simulations of the North Santiam and
McKenzie River basins based on their correlation with observed meteorologic
data.

Variable North Santiam McKenzie
Climate model Mean Climate model Mean
R? R?
Temperature inmem4 0.86 NorESM1-M 0.85
Relative MIROC-ESM- 0.41 MIROC-ESM- 0.41
humidity CHEM CHEM

Solar radiation HadGEM2-CC365  0.86 HadGEM2-CC365  0.86
Wind speed GFDL-ESM2M 0.15 GFDL-ESM2M 0.15

Discovery date, area burned, and severity of the three wildfires that burned in the North Santiam and McKenzie Basins, Oregon, USA in 2020. Burn severity percentages

were calculated from the severity classes identified in the BAER burn severity maps.

Wildfire Watershed Discovery date Total area (ha) Area in basin (ha) Burn severity within basin

% unburned % low % moderate % high
Lionshead North Santiam 16 August 2020 82,794 38,448 15.9 39.0 35.0 10.0
Beachie Creek North Santiam 16 August 2020 78,333 51,738 3.2 29.5 54.1 13.1
Holiday Farm McKenzie 17 September 2020 70,169 56,394 3.8 20.8 65.6 11.0
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here, calibrating for both streamflow and sediment increases confidence
that the underlying physical processes are being correctly represented in
the model. A regionalization approach was taken to calibrate the
models, where calibration was performed for each subbasin with a
monitoring point and its upstream basins. We first calibrated the up-
stream monitoring points, working downstream to the basin outlet. We
evaluated model performance using the Nash Sutcliffe Efficiency (NSE)
and adjusted R? coefficients (bR?). Best parameters were determined by
performing 500 simulations at a time, manually narrowing parameter
ranges based on the best parameter values from the previous model run.

Observed discharge data used to calibrate the model was aggregated
from several sources. The waterData package (Ryberg and Vecchia,
2017) in R (R Core Team, 2020) was used to obtain discharge data from
USGS gauging sites. We also used stream discharge data from the HJ
Andrews Experimental Forest (Johnson et al., 2020) and data on spring
contributions to streamflow from Jefferson et al. (2006) to calibrate the
model.

2.4. Wildfire simulations

We modeled both the Beachie Creek and Lionshead wildfires in the
North Santiam Basin and the Holiday Farm wildfire in the McKenzie
Basin. We set the start date of the wildfires in the model to 7 September
2020, which was the actual start date for the Holiday Farm fire and the
date that the Beachie Creek and Lionshead fires rapidly expanded in size.
A wildfire module was developed where, during a model run at the
wildfire date, multiple parameters in the model were modified to
represent the effects of wildfire on the landscape. To select the range of
parameters to represent the effects of wildfire, we developed a concep-
tual model of expected effects based on literature values and expert
opinion (Fig. 2). To model the mixed-severity burn patterns of the 2020
wildfires, we specified parameter changes for low, moderate, and high
severity conditions. Wildfire severity was determined from severity
maps created by U.S. Forest Service Burn Area Emergency Response
(BAER) teams and used to assign burn severities to HRUs in the burned
area. Specifically, we used the ArcMap “Zonal Statistics as Table” tool to
calculate the mean burn severity for each HRU where burn severities
were represented by increasing integer values. In our model, we ensured
the percent area burned at each severity class matched the percent area
burned at each severity class of the actual fire as closely as possible. To
do that, we chose threshold values of the HRU averaged burn severity to
classify HRU’s with burn severities of low, moderate, and high. We used
a broad definition of burn severity to refer to the effects of fire on the
consumption of large fuels, shrubs, litter, organic matter, and buried
plant parts (Monitoring Trends in Burn Severity, n.d.). Water HRUs were

Pre-Fire

Post-Fire

Fig. 2. A conceptual model showing the motivations behind the parameters
modified within SWAT to simulate wildfire effects. Fire consumes vegetation,
resulting in shifts in forest structure and decreasing transpiration (a). The loss of
vegetation results in less ground cover and less surface “roughness” (b). Phys-
ical soil properties like bulk density and erosivity can be altered by the heat of
the fire (c). Soil hydraulic properties like infiltration are often altered by
wildfire, generally resulting in increased surface runoff (d).
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not burned in the simulation.

We ran the calibrated models for one year following the fires, from 7
September 2020 to 6 September 2021. We chose to only simulate one
year at a time due to annual model memory effects and because the
model does not represent wildfire recovery. As such, running the model
continuously in the post-fire period would not accurately represent
continuous years of post-fire conditions. We repeated the model run 56
times for the McKenzie and 60 times for the North Santiam using
different precipitation scenarios. Repeating the model run multiple
times for the first post-fire year allowed us to hypothetically examine the
effect of different annual precipitation in the initial post-fire period.
Precipitation for each single year simulation was generated from the
range of historical precipitation for each basin. During each simulation,
a year of the precipitation data was selected from the historic record,
matching the day of year (7 September 2020 to 6 September 2021), and
used as the precipitation input for the post-fire year. For each simulation
we used the reservoir data from the same year as the precipitation data
to account for differing annual reservoir management. Other climate
variables, including minimum and maximum temperature, wind speed,
solar radiation, and relative humidity used the predicted values from the
MACAvV2 gridded climate model (RCP 8.5, Table 3) from 7 September
2020 to 6 September 2021. The historic precipitation data included
years 1960-2019 from the North Santiam and 1964 to 2019 for the
McKenzie.

We developed a module in SWAT to enable us to simulate the effects
of wildfire by changing various model parameters such as saturated
hydraulic conductivity, available water capacity, bulk density, soil and
plant uptake evaporation compensation factors (used to adjust the depth
distribution of soil and plant evaporative demand), curve number,
Manning’s n for overland flow, and land use type. Details on how each of
these factors was modified to represent wildfire in the model are pro-
vided below and are summarized in Table 4.

2.4.1. Saturated hydraulic conductivity

Saturated hydraulic conductivity is used in the model to determine
the rate of vertical water percolation through soil layers, it is not directly
used to calculate runoff volumes. We modified soil saturated hydraulic
conductivity in the upper soil layer based on the relationship developed
by Moody et al. (2016) (Equation 1).

Kfs — 2360e—0,0056dNBR (1)

where Kj; is field saturated hydraulic conductivity and dNBR is differ-
enced normalized burn ratio, a satellite derived metric that is commonly
used to capture wildfire-caused differences in leaf area, plant produc-
tivity, and moisture. For dNBR values less than 400 the saturated hy-
draulic conductivity remained unchanged. For calculating changes in
saturated hydraulic conductivity using Equation (1), we selected dNBR
values of <400 for low burn severity, 550 for moderate burn severity,
and 800 for high burn severity based values proposed by Lutes et al.
(2006). Since our starting, unburned saturated hydraulic conductivity
values were different than those in Moody et al. (147 mm h~1;2016), we

Table 4
Summary of SWAT parameters modified in the wildfire module at each fire
severity.

Parameter Replacement type Change based on fire severity

Low Moderate High
SOL K(1) relative 0% —26% —82%
SOL_AWC relative —25% —70% —90%
SOL_BD(1) relative 1% 9% 13%
ESCO replace 0.5 0.8 1
EPCO replace 0.5 0.2 0.01
OV_.N replace 0.8 0.4 0.011
Land Use replace FRSE RNGE BARR
CN2 additive 10 20 30
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quantified the absolute change between their starting values and the
values predicted by the dNBR thresholds. We then converted those
values to a relative change, which was broadly applicable across satu-
rated hydraulic conductivities. This resulted in modifications of hy-
draulic conductivity of 0 % for low severity, —26 % for moderate
severity, and —82 % for high burn severity for the fire module.

2.4.2. Available water capacity

During calibration we increased the available water capacity—a
model parameter to account for the water available to plants for tran-
spiration—in the soils to account for the high resistance to xylem
dysfunction and ability to transpire at low soil water potential by
Douglas-fir, the dominant tree species in our study basins (Brooks et al.,
2006; Domec et al., 2008, 2004; Fan et al., 2017). However, for the
wildfire scenario, we decreased the available water capacity to account
for post-fire changes in vegetation (i.e., mortality of Douglas-fir trees
due to wildfire) to help meet the expected decrease in catchment-level
transpiration, which has been observed to decline by up to ~55%
following high severity wildfire (Ma et al., 2020; Roche et al., 2018).
Available water capacity was reduced 90 % for high severity, 70 % for
moderate severity, and 25 % for low severity. Available water capacity
changes were determined by testing scenarios where the entire basin
burned and choosing changes that would result in ET drops matching
existing literature values (Ma et al., 2020; Roche et al., 2018). Admit-
tedly, adjusting available water capacity is not an ideal way to account
for decreased transpiration post-fire, as it can impact the amount of
water held within the soil. Leaf area index and rooting depth also control
plant transpiration within the model. However, we found these pa-
rameters insensitive. Which is likely due to SWAT’s origins as an agri-
cultural model, as such, forests are typically not well represented (Haas
et al., 2022).

2.4.3. Soil bulk density

We increased the bulk density of the upper soil layer by 13 % for high
severity, 9 % for moderate severity, and 1 % for low severity fire. We
determined these estimates of post-fire changes in bulk density from
literature values associated with laboratory burning experiments (Badia
and Marti, 2003; Stoof et al., 2010) and empirical studies (Ebel and
Moody, 2020; Xue et al., 2014). In general, the heat generated during
wildfires can affect soil texture (Badia and Marti, 2003; Ulery and
Graham, 1993), organic matter content (Alauzis et al., 2004; Garcia-
Corona et al., 2004), and overall soil structure (Ebel and Moody, 2020),
which modify the overall bulk density.

2.4.4. Soil and plant uptake evaporation compensation factors

The soil evaporation compensation factor (ESCO) is a coefficient in
the model that allows the user to modify the depth distribution of soil
evaporation. The coefficient ranges from 0.01 to 1.0, as ESCO decreases,
more water can be taken from deeper soil levels. Similarly, the plant
uptake compensation factor (EPCO) is a coefficient that allows the user
to modify the depth of water in the soil that vegetation can access for
transpiration, EPCO also ranges from 0.01 to 1.0, however in this case,
larger values equate to water demand able to be met by deeper soil
levels. In our wildfire scenarios, we increased the ESCO and decreased
the EPCO, which limited the depth of soil water use after fire occurrence.
Specifically, for high severity, we set ESCO to 1 and EPCO to 0.01, for
moderate severity we set ESCO to 0.8 and EPCO to 0.2, and for low
severity we set ESCO and EPCO to 0.5. These modifications were made
based on the loss of overstory vegetation and transpiration due to
wildfire, as well as the increased bulk density (Ebel and Moody, 2020;
Xue et al., 2014), surface sealing (Larsen et al., 2009), water repellent
layers (Nyman et al., 2010; Robichaud, 2000), and a loss of porosity
(Xue et al., 2014), which can all contribute to more surficial evaporative
processes.
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2.4.5. Curve number

The curve number is a widely used parameter for projecting the
approximate proportion of precipitation that ends up as direct runoff.
We increased the curve number relative to the initial values associated
with the soils by 10 units for low severity, 20 units for moderate severity,
and 30 units for high severity burns. If these increases resulted in a curve
number greater than 98, we adjusted the values back to a maximum of
98, which was representative of impervious surfaces. We determined
these shifts in curve number values based on knowledge that changes in
soil physical properties due to wildfire can lead to elevated infiltration
excess overland flow (Malvar et al., 2011; Onda et al., 2008) and was
consistent with previously proposed adjustments (USDA, 2013; USDA
Forest Service, n.d.).

2.4.6. Manning’s “n” for overland flow

We also changed the Manning’s n values—a hydraulic roughness
coefficient—to account for the differential effects of wildfire severity on
soil surface roughness and resistance to overland flow. In general,
greater wildfire severity results in greater ground cover consumption
and loss of surface roughness components (Keeley, 2009; Parson et al.,
2010). Thus, we related the expected remaining ground cover associated
with different burn severities to similar Manning’s n ground cover
values. Specifically, we set Manning’s n to 0.80 for low severity, 0.40 for
moderate severity, and 0.011 for high severity fires, which was also
consistent with previous studies (USDA Soil Conservation Service,
1986).

2.4.7. Land use

Given that wildfires can dramatically change forest structure and
composition (Halofsky et al., 2020; Meng et al., 2015), we used the land
use function in the model to represent the expected shifts in forest
ecosystems associated with different fire severities. We made this deci-
sion because there was no option in the model to modify forest density
but required a way to model the post-fire effects on the loss of evapo-
transpiration. Similar land use changes have been used previously
within SWAT to account for post-fire decreases in transpiration (Loiselle
et al., 2020). As such, we updated the land use, focusing principally on
the loss of woody biomass from trees. Specifically, for low severity burns
we did not change the original land use and, as such, forested areas were
still considered to be forested as evergreen or conifer forests (FRSE). For
moderate severity burns, we changed the land use to grasses (RNGE)
while for high severity burns, we updated the land use to barren (BARR).
These changes were necessary to produce a reasonably realistic reflec-
tion of the transpiration loss associated with wildfire, which is often the
dominant hydrological process that is impacted, leading to additional
water availability for runoff generation and streamflow (Ma et al., 2020;
Niemeyer et al., 2020).

2.5. Sensitivity analysis

To determine the most sensitive parameters in our wildfire model,
we ran a sensitivity analysis for both the North Santiam and McKenzie
models. For each model we ran three wildfire scenarios, a low, moder-
ate, and high where the entire basin was burned at that severity.
Sensitivity was tested by varying the parameters used in the wildfire
module one at a time, running 100 simulations for each parameter with
values ranging from the low to high severity wildfire module values. To
test land use change, we replaced the existing land cover with the other
generic land cover types one at a time, excluding water, which was a
total of 18 simulations. For each scenario, initial conditions were set to
the burned, wildfire module values for that severity, and a median
precipitation scenario was used. Sensitivity was determined for both
annual water yields and peak flows by first calculating the average
change from the base, unburned scenario across all subbasins in the
model. Then to get a measure of sensitivity we calculated the standard
deviation of the average change across both models.
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2.6. Statistical analysis

Unfortunately, model predictions of streamflow often remain inac-
curate with substantial uncertainty due to limited calibration data, un-
resolved model parameter values, and poor representation of physical
processes (Faramarzi et al., 2015; Zaremehrjardy et al., 2021). However,
in our study, we were not concerned about producing accurate pre-
dictions of the streamflow response to wildfire. Rather, we were inter-
ested in quantifying and estimating the relative change in streamflow
from the unburned to burned scenarios, which enabled us to not be
constrained by model uncertainty. Model calibration ensured that the
physical processes were reasonably represented—our model fits pro-
vided evidence that the model was indeed representing the physical
processes adequately. Despite the adequate representations of physical
processes in the model, differences in model parameterization can pro-
duce variability in relative streamflow changes (Boisrame et al., 2019).

Annual summaries of water yield and peak streamflow were deter-
mined for both the basin outlets and the headwater subbasins, where the
headwater subbasins did not have upstream subbasins. Peak streamflow
was determined as the maximum daily flow in each precipitation sce-
nario year. Linear mixed effects (LME) models were created for annual
water yields and peak streamflow using the nlme package in R (Pinheiro
et al., 2020). This analysis was used to find the differences between burn
and unburned scenarios and test if there was statistical evidence for an
effect of wildfire. The basin and wildfire scenario were the fixed effects
in the model with precipitation scenario/basin as nested random effects.
Variance of errors were allowed to vary by basin. Subbasins that were
not burned were removed before analysis. Additionally, to simplify the
headwater models, we used the mean percent change of all the head-
water subbasins in each model for each precipitation scenario. The LME
model for peak streamflow changes at the headwater scale was logio
transformed to normalize the residuals. We used the R package emmeans
to extract the mean and 95 % confidence intervals from the LME model
and ran Tukey multiple comparison tests to check for significant dif-
ference in the mean values between groups (Lenth, 2021).

To visualize the effect of the wildfire scenario across all flow mag-
nitudes, flow duration curves were created for both the burned and
unburned scenarios for individual subbasins. The streamflow data was
sorted and ranked by descending magnitude, including all the precipi-
tation scenarios. Similarly, flood recurrence intervals for both burned
and unburned scenarios were calculated by ranking the streamflow
across all precipitation scenarios in descending order of magnitude. We
then calculated return periods and probabilities using the Weibull
plotting position method (Helsel et al., 2020).

We also performed random forest analyses to identify variables of
importance (i.e., burn severity, land-use, aspect, geology; Table A2) in
driving post-fire streamflow changes. We performed two separate ana-
lyses, one for annual water yield and one for peak streamflow changes.
We combined the data for both basins for each analysis. The explanatory
variables came from GIS data layers, which were aggregated to a sub-
basin level using the ArcMap “Zonal Statistics as Table” tool to calculate
the mean (for continuous data) or mode (for categorical data). Then we
linked the streamflow data to the aggregated landscape and climate
variables associated with each subbasin (Table A2). To numerically
compare the burn severity across subbasins for the random forest
analysis, a metric of relative burn severity was developed by averaging
the wildfire pixels in the area of each subbasin, where 0 was unburned, 1
was low severity, 2 was moderate severity, and 3 was high severity.
Thus, the metric ranged from 0 to 3, with increasing values representing
higher severities.

The random forest analysis was performed using the ‘cforest’ func-
tion in the Party package in R (Hothorn et al., 2006; Strobl et al., 2008,
2007) for both percent change in annual streamflow and percent change
in maximum annual peak flow. Variable importance was determined
using the permutation method to find the mean decrease in accuracy of
the random forest model on the out-of-box data using the ‘varimp’
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function. Analysis used 2000 trees, ‘mtry’ was set to 9, and the model did
not use replacement when sampling the observations, as recommended
by Strobel et al. (2007) for accurate variable importance measures. The
subbasins upstream of the fire were removed for analysis. Due to the
limited number of data points, the entire dataset was used for training.
Model fit was determined using the out of box data to calculate a pseudo
R? value by using the ‘predict’ function from the Party package to
calculate the sum of squares residuals. To investigate directionality of
the driver variables, partial dependence plots were found for the five
most important variables in each model using the pdp package in R
(Greenwell, 2017). To minimize computational time, 15 equally spaced
points were used for continuous variable plots. A second set of random
forest models were created to look at mean burn severity in each sub-
basin based on the real burn severity wildfire maps. These models used
the same procedure to the other models except in the burn severity
random forest all the subbasins were retained in the analysis.

3. Results
3.1. Calibration

The daily streamflow calibration for the North Santiam model had a
mean Nash Sutcliffe efficiency coefficient (NSE) of 0.48 + 0.19. This was
slightly better than the streamflow calibration for the McKenzie Basin,
which had a mean coefficient value of 0.40 + 0.47 (Fig. 3). In the
validation period, the North Santiam had a mean NSE of 0.35 + 0.32
while the McKenzie had a mean coefficient value of 0.56 + 0.19 (Fig. 3).
Although previous recommendations for modeling daily streamflow
data have indicated a NSE above 0.50 as satisfactory and above 0.70 as
good (Moriasi et al., 2015), these recommendations are principally for
small, headwater catchment scale studies. Such studies typically only
include a single basin at the outlet; however, our models included 6 to
13 calibration points in each basin, making it challenging to achieve an
overall NSE value above 0.7. Given the complexity of our study basins,
we found these model fits satisfactory. See Table Al for more detailed
calibration results.

3.2. Validation of wildfire module

We validated our model outputs for the wildfire simulations by
comparing predicted streamflow values with a year of observed
streamflow from USGS gauges following the wildfires, using the most
severely burned sub-catchment in each basin which had measured
streamflow data available. We validated the outputs in the North San-
tiam Basin with data from subbasin 23, which had a burn severity of
1.86 out of 3—a moderate to high burn severity sub-catchment. The
observed annual water yield for the first year post-fire was 2,085 mm.
Comparatively, the average predicted annual water yields were 1,449 +
448 mm for the unburned scenarios and 1,644 + 462 mm for the burned
scenarios. While the model underestimated the actual annual water
yield, the annual water yields (1960-2019) in the burned scenario were
more similar to the observed data than the unburned scenario (Fig. 4).
The average observed low flows (June through August) were 0.77 +
0.54 mm d!, while average low flows were 0.46 + 0.30 mm d* for the
unburned scenarios and 0.79 + 0.48 mm d’! for the burned scenarios.
The observed peak flow for the first year post-fire, 103.2 mm d!
exceeded both model predictions. The mean predicted peak flow was
34.6 + 15.8 mm d’! for the unburned scenarios and 50.4 + 20.2 mm d’!
for the burned scenarios.

Comparatively, in the McKenzie, subbasin 65 had a relative burn
severity of 0.35 out of 3, so it was less fire-affected overall. This was
reflected in the smaller differences between the unburned and burned
scenarios (Fig. 4). The observed annual water yield in the first post-fire
year was 1,279 mm. This was slightly lower than our modeled annual
water yield (1964-2019) of 1,313 + 246 mm in the unburned scenario
and 1,342 + 248 mm in the burned scenario. Similarly, observed
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Fig. 3. The location and fit of the (a) calibration data (2000 to 2019) and (b) validation data (1990 to 1999) for the North Santiam (upper) and McKenzie (lower)
River basins. Each dot represents a location where we calibrated streamflow with the color and value representing the goodness of fit using the Nash Sutcliffe
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Fig. 4. (a) Measured streamflow (USGS Gage 14182500) compared with the model results the same location (Subbasin 23) in the North Santiam for the unburned
and burned scenarios. (b) Measured streamflow (USGS Gage 141631150) compared with the model results the same location (Subbasin 65) in the McKenzie for the
unburned and burned scenarios. The colored bands represent the 50, 90, and 98th percentiles of model outputs of streamflow from the range of inputs of precipitation
scenarios. The bottom panel shows the difference between the burned and unburned scenarios where the ribbon is bounded by the minimum and maximum change in

streamflow for every week.

average low flows (June through August) were slightly lower than both
modeled scenarios. The observed mean low flows were 2.28 + 0.81 mm
d’! while the unburned scenarios had a mean of 2.66 + 0.57 mm d’}, and
the burned scenarios had a mean of 2.74 & 0.59 mm d’!. Peak flows,
however, were better represented by the burned scenario. The peak flow
for the observed data was 13.6 mm d! while the mean modeled peak
flows were 10.1 + 3.2 mm d™ for the unburned scenarios and 12.5 +
4.4 mm d™! for the burned scenarios.

3.3. Magnitude and range of wildfire effects

Inclusion of the wildfire simulations in our models increased annual
water yields in the North Santiam by an average of 14.6 % at the
headwater scale and 8.0 % at the basin outlet scale.

Comparatively, the wildfire simulations in the McKenzie Basin
increased annual water yields on average by 10.5 % in the headwater
sub-catchments and 2.2 % at the basin outlet (Table 5). While the
wildfire simulations resulted in modest increases in annual water yields,
there were much larger increases in peak streamflow. In the North
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Table 5
Effects of wildfire on annual water yields and peak flows at different spatial scales for the North Santiam and McKenzie River Basins, Oregon. Significance of the effect

of wildfire was determined using the Tukey multiple comparisons test with our linear mixed effects models.

Streamflow parameter Scale Basin Scenario Mean 95% confidence interval Wildfire effect Basin wildfire effect
Lower Upper t-value p-value F-value p-value
Annual water yield (mm year ') Headwaters McKenzie Unburned 986 896 1077 40.9 <0.001 519 <0.001
Burned 1090 1000 1180
N Santiam Unburned 1287 1197 1376 68.7 <0.001
Burned 1475 1386 1565
Outlet McKenzie Unburned 1251 1185 1317 39.8 <0.001 1776 <0.001
Burned 1278 1212 1344
N Santiam Unburned 1167 1101 1232 65.4 <0.001
Burned 1261 1195 1326
Peak flow (mm day ) Headwaters* McKenzie Unburned 16.3 14.7 18.2 42.9 <0.001 124 <0.001
Burned 31.8 28.6 35.4
N Santiam Unburned 25.5 23.0 28.3 48.6 <0.001
Burned 40.5 36.5 44.9
Outlet McKenzie Unburned 9.69 8.61 10.8 11.6 <0.001 0.061 0.806
Burned 12.1 11.0 13.2
N Santiam Unburned 13.1 12.0 14.1 10.0 <0.001
Burned 15.4 14.4 16.5

Note. Wildfire Effect tests the difference in means between the unburned and burned scenarios. Basin-Wildfire Effect tests if there is an interaction between basin and
wildfire, answering do the basins have different responses to fire. *Peak flows for the headwater were log; transformed, so the mean shown is the geometric mean.

Santiam, peak streamflow was increased an average of 58.8 % in the evidence (p < 0.001) that the wildfire simulation increased both the
headwater sub-catchments and 17.6 % at the basin outlet. In the mean annual water yield and peak streamflow in both basins (Table 5).
McKenzie, the geometric mean of peak flows increased 95.0 % in the There was also strong evidence (p < 0.001) that there was an interaction
headwater sub-catchments and increased 24.9 % at the basin outlet. effect between basin and wildfire for mean annual water yields at both
Statistically, from our linear mixed effects models, there was strong scales and peak streamflow at the headwater scales, meaning that the

Q

'>. 10" \

© e

© —— ]

£ ——
E 1 \
z outlet

4=

£ 10" — McKenzie: Burned

8 : - - McKenzie: Unburned

5 N Santiam: Burned

10.2 N Santiam: Unburned
0 25 50 75 100
b % Time flow is equalled or exceeded
A
1

]

g 10

£

= 10°

=

o

=

e 10" — McKenzie: Burned

g - - McKenzie: Unburned

% N Santiam: Burned

1 0_2 N Santiam: Unburned "

0 25 50 75 100
% Time flow is equalled or exceeded

Fig. 5. Flow duration curves in the McKenzie and North Santiam, Oregon at (a) the basin outlet and (b) for two selected high severity subbasins, 41 in the McKenzie
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effect of wildfire was different between basins. Similarly, the flow
duration curves for each of the study basins, illustrated an increase in the
infrequent, high flows, or the largest 5% of flows (Fig. 5). For example,
the largest 5% of flows in the severely burned headwater catchments of
the North Santiam increased by 37.0 %. Interestingly, the largest 5% of
flows in the severely burned headwater catchments in the McKenzie
Basin increased by 128 %. At the larger basin scale, the upper 5% of
flows at the North Santiam Basin outlet increased 17.0 %, while in the
McKenzie Basin they increased by 29.5 %. Flood recurrence intervals
also showed increased high flows. For example, at the North Santiam
Basin outlet, the streamflow for a 1-year flood was increased 12.5 % and
the ~6-year flood was increased 20.0 %. At the McKenzie Basin outlet
there was a 10.8 % increase in streamflow for the 1-year flood and 25.8
% increase in the ~6-year flood. While these changes at the basin scale
were notable, there were much larger increases in the magnitude of 1-
and 6-year floods in the headwater sub-catchments that were burned at
high severity (Fig. 6). For example, in the North Santiam in subbasin 14,
the 1-year flood was increased by 45.5 % while the ~6-year flood was
increased by 37.8 %. In subbasin 41 in the McKenzie, the 1-year flood
was increased by 146 % while the ~6-year flood was increased by 156
%.

The flow duration curves from both basins, also illustrated that the
burn scenario resulted in increases in summer low flows (Fig. 5). For
example, in a severely burned subbasin in the North Santiam, the lowest
5% of flows increased from 0 mm d’! to 0.025 mm d!, while the lowest
5% of flows in a severely burned basin in the McKenzie increased by 144
%. At the basin outlet of the North Santiam, the lowest 5% of flows

a outlet
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increased by 179 %. However, at the outlet of the McKenzie Basin, the
lowest 5% of flows increased by only 0.43 %. Overall, the effect of
wildfire on annual water yields, peak flows, and low flows was most
evident in headwater catchments and was dampened at the outlet of
both basins (Fig. 7).

3.4. Drivers of post-fire streamflow changes

Our random forest model for annual water yields (pseudo R? = 0.89;
Fig. 8) indicated that burn severity was the most important variable for
describing changes between the unburned and burned scenarios, ac-
counting for 52.4 % of model accuracy. Our model also indicated that
annual precipitation was the second most important variable influ-
encing annual water yields, representing 16.7% of the model accuracy.
Percent area burned was the third most important variable influencing
annual water yields, accounting for 13.4 % of the model accuracy. Other
important variables for annual water yield changes included vegetation
type and aridity which accounted for 5.4 % of model accuracy. The
remaining variables accounting for the last 12 % of the model accuracy.

Our random forest analysis for peak flow changes found different
driving factors than the analysis for annual water yields (pseudo R? =
0.80; Fig. 8). Here, the wildfire characteristics, burn severity and percent
area burned, were the most important variables. Burn severity accoun-
ted for 39.0 % of model accuracy with percent area burned accounting
for 21.7 %. Other important variables for peak streamflow changes
included aridity, soil type, and geologic province, which were respon-
sible for 20.7 % of model accuracy. The remaining variables accounted
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Fig. 6. Flood recurrence intervals at the outlet (a) and two severely burned subbasins (b) subbasin 41 in the McKenzie and 14 in the North Santiam, Oregon for the
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for the last 18.6 % of model accuracy.
4. Discussion

As expected, the results from our model indicated that burn severity
and percent area burned were generally the most important factors for
projecting both peak flow and annual water yield changes after wildfire
in the McKenzie and North Santiam basins, Oregon (Fig. 8). This finding
is consistent with previous models, which indicated that burn severity or
area burned are key predictors of post-fire peak flow responses
(Kinoshita et al., 2014) or annual water yields (Feikema et al., 2013).
Several empirical studies have also illustrated the importance of burn
severity or the proportion of catchment area burned for driving the
streamflow response. For example, both burn severity and percent area
burned were positively correlated with increased peak flows, low flows,
and runoff ratios from 82 burned watersheds in the western US (Saxe
et al., 2018). Similarly, changes in annual streamflow were related to
high burn severity in 25 catchments in the Pacific Northwest using five
years of both pre-fire and post-fire data (Hallema et al., 2017a). Elevated
streamflow after wildfires is often attributed to decreased evapotrans-
piration and changes to soil hydraulic properties, resulting in a greater
proportion of precipitation ending up in streams (Ebel et al., 2012; Ma
etal., 2020; Moody et al., 2016, 2008). For instance, seven watersheds in
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New Mexico exhibited elevated post-fire runoff ratios in areas where
hillslope flow paths were burned at high severity (Moody et al., 2008).
However, while many studies have found a linkage between burn
severity and percent area burned and the resulting hydrologic response,
wildfire effects have been highly variable and are likely due to catch-
ment differences in geophysical properties and climate (Kinoshita et al.,
2014; Saxe et al., 2018). Better understanding of how these differences
affect post-fire streamflow changes is key to identifying areas vulnerable
to post-fire effects, which will help inform land management decisions
both before and after fire.

Indeed, the proportional changes in annual water yield due to
wildfire in our two study basins were also related to catchment char-
acteristics and climatic variables. Specifically, annual precipitation was
the second most important variable in our random forest analysis for
describing the change in annual water yield. The largest annual water
yield gains generally occurred during wet years (Fig. Al). However,
drier years had greater percent changes in annual water yields between
the burned and unburned scenarios compared to wetter years (Fig. 9).
We posit this was likely due to a greater proportion of the gross pre-
cipitation allocated to evapotranspiration (ET) in the unburned scenario
for drier years. Several empirical studies have also identified precipita-
tion as an important driver of post-fire annual water yields. For example,
when post-fire streamflow was separated using climate elasticity models
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for a burned watershed in California, streamflow was reduced 102 % due
to precipitation but increased 38 % due to fire (Hallema et al., 2017b).
Similarly, annual water yields increased after wildfire in six paired
catchments in California, especially in years with average or above
average precipitation (Bart and Hope, 2010). A review of 162 large
watersheds that experienced land-use changes also indicated that wa-
tersheds receiving less annual precipitation were more sensitive to water
yield changes after the disturbance (Li et al., 2017).

While fire characteristics and annual precipitation were the primary
drivers of post-fire annual water yields—explaining 82 % of the varia-
tion in annual water yield changes—the random forest model also
identified vegetation type and aridity as important variables (Fig. 8).
Specifically, partial dependence plots indicated greater changes in
annual water yields after fire in less arid areas and in catchments
dominated by Pacific silver fir trees (Fig. 9). This was expected as these
areas tended to have greater rates of ET during the pre-fire period. After
wildfire, these areas likely experienced greater decreases in ET due to
vegetation loss, leading to greater post-fire changes in runoff and
streamflow. This is consistent with a post-fire study in California, where
higher density forests had larger changes in post-fire ET, with the
greatest decreases occurring in evergreen forests compared to other land
use types (Ma et al., 2020). A number of general land use studies have
also found that catchments draining conifer forests exhibited the
greatest increases in water yields after disturbance. For example, a
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paired watershed study from the Pacific Northwest and Eastern US
examined streamflow changes following harvesting during the wet,
moist season; they found the greatest increases in streamflow occurred
in hemlock forests followed by mixed conifers, redwoods, and hard-
woods (Jones and Post, 2004). Similarly, a review of 145 deforestation
and afforestation studies investigated the estimated changes in annual
water yield for seven different kinds of vegetation types—the greatest
changes occurred in conifer forests while the smallest changes in annual
water yields occurred in scrub dominated catchments (Sahin and Hall,
1996).

Comparatively, peak flow changes were likely due to fire effects on
soil hydraulic properties, particularly infiltration. Besides fire severity
and proportion of catchment burned, aridity was also identified as an
important driver of wildfire-caused peak flow changes (Fig. 8). Partial
dependence plots indicated that more arid areas led to higher peak flow
changes with wildfire, which was opposite to the relationship between
aridity and annual water yield changes (Figs. 9 and 10). Greater peak
flows in higher aridity catchments was likely due to aridity acting as a
high order control on the curve number in the model, which controls the
proportion of runoff. This was particularly interesting because it was
consistent with several recent empirical studies. For example, in a study
of two burned basins with differing aridities in Victoria, AUS, the more
arid basin had infiltration rates 333-times lower and runoff ratios 7-
times greater than a wetter basin (Noske et al., 2016). Similarly, in
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five burned plots from Victoria, AUS there was a power relationship
between aridity and surface runoff ratio, with runoff ratios two orders of
magnitude greater in the driest site compared to the wettest site (Van der
Sant et al., 2018).

Besides aridity, infiltration is often also strongly related to soil type,
which was determined to be the fourth most important factor describing
peak flow changes in our study (Fig. 8). Partial dependence plots pre-
dicted the largest peak flow changes in catchments with soil types with
low rock fragments and carbon contents (Fig. 10, A2-A3). The inverse
relationship between rock content and peak flows was expected as
increased preferential flow—where water is transported to depth in
soils—is known to occur in coarser soils resulting in lower runoff re-
sponses (Hartmann et al., 2020). Several empirical studies have also
illustrated the importance of soil properties for post-fire infiltration and
runoff changes. For example, an examination of the wettability of
different sized soil aggregates from alkaline, calcareous loamy soils in
Spain showed that the larger aggregates (1-2 mm) had low levels of
hydrophobicity and retained macropores after burning, resulting in less
runoff (Mataix-Solera and Doerr, 2004). Additionally, an erosion lag was
observed for soils with high gravel contents in a study of seven burned
sites in New Mexico, which was attributed to an armoring effect of
gravel, increasing infiltration and preventing surface runoff (Ebel et al.,
2018); however, unfortunately, armoring is not a process explicitly
represented in the model. Additionally, gravel does not always lead to
decreased runoff—during the first storm after a wildfire in California,
ash filled macropores in gravelly soils, leading to increased runoff ratios
(Onda et al., 2008). Our wildfire simulations did not include ash dy-
namics, which is likely why we did not observe such an effect.

The inverse relationship between carbon content and peak flow was
counter to our expectations. Generally, catchments with greater soil
carbon retain and store more water (Hudson, 1994). However, our
model did not change the soil carbon in the wildfire scenarios, so sites
with high soil carbon likely continued to retain the soil water, limiting
surface runoff and peak flows. This is counter to what several empirical
studies have found. For example, in Northern Mongolia, soil volumetric
water content was reduced in soils after wildfire, Kopp et al. (2017)
hypothesized that this was due to loss of the organic layer, increasing
water movement through preferential flow paths and increasing
stormflow. Similarly, water retention was greatly decreased for soils on
Southern slopes with higher organic matter contents following a wildfire
in Colorado (Ebel, 2012).

Lastly, geologic province was also identified as an important factor
for peak flow changes (Fig. 8). This result was not too surprising. For
unburned conditions at our sites, surface runoff is extremely limited and
most peak flows are generated by subsurface stormflow. While we did
observe an increase in runoff with wildfire, we would still expect those
subsurface processes to remain important. Partial dependence plots
identified the smallest post-fire peak flow changes for High Cascades
geology while Western Cascades geology showed the greatest changes
(Fig. 10). High Cascades province has highly permeable rocks, lacks
drainage networks, and is primarily spring fed, with groundwater transit
times between 3 and 26 years (Jefferson et al., 2007, 2006). Compara-
tively, Western Cascades is dominated by low permeability rocks, steep
slopes, and streamflow is primarily from shallow subsurface flows
(Jefferson et al., 2007, 2006). These differences are likely leading to
differing peak flow responses after wildfire. This was also observed in a
Northern California modeling study which tested how wildfire location
impacted runoff and infiltration; the greatest changes occurred in areas
with sleep, complex topography in areas with low permeability (Maina
and Siirila-Woodburn, 2020). Additionally, the long flow path time-
scales in the High Cascades likely helps to delay or mute the effect of
wildfire entirely. This was noted for two burned catchments in Southern
California where end member mixing analysis was used to investigate
the subsurface response to wildfire (Jung et al., 2009). The basin with
greater groundwater contributions prior to the fire showed a more
muted response to wildfire, with surface runoff only increasing by a
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mean of 2.8 %, comparatively, surface runoff increased by a mean of
41.4 % in the basin where flow is split evenly between soil water and
groundwater.

Wildfire effects on streamflow were substantially greater at the
headwater scale than the basin outlet. Our models predicted annual
water yield changes between —0.25-155 % for headwater subbasins and
1.28-23.4 % at the basin scale (Fig. 7). For basins less than 10,000
ha—the approximate area of our modeled headwater sub-
basins—measured changes in annual streamflow have ranged from 20 to
450 % in empirical studies (Campbell et al., 1977; Hallema et al., 2017a;
Helvey, 1980; Lane et al., 2006; Lodiciga et al., 2001; Owens et al., 2013;
Scott, 1997; Wine and Cadol, 2016) and 1.2-74.6 % in modeling studies
(Havel et al., 2018). Similar to our model results, wildfire effects
observed in empirical studies have tended to be smaller at larger basin
scales (>10,000 ha), ranging from no change up to a 38 % increase in
annual water yields in basins up to 122,300 ha in area (Bart, 2016; Bart
and Hope, 2010; Hallema et al., 2017a; Lane et al., 2006; Lodiciga et al.,
2001; Owens et al., 2013; Scott, 1997; Wine and Cadol, 2016). In other
modeling studies, post-fire annual water yields have been estimated to
increase 0.7-63.7 %, although most models have projected annual water
yield increases of less than 10 % (Basso et al., 2020; Havel et al., 2018;
Loiselle et al., 2020; Moran-Tejeda et al., 2015).

Comparatively, peak flows in our models were predicted to change
between —0.78-520 % at the headwater subbasin scale and —1.1-50.9
% at the larger basin scale (Fig. 7). Previous modeling studies have also
projected a substantial range in potential peak flows responses, ranging
between 120 and 2,725 % for basins less than 2,500 ha (Seibert et al.,
2010; Sidman et al., 2015). These model projections seem to align with
empirical studies, which have also observed substantial variability in
post-fire peak flows. For example, in small basins (less than 10 ha), in-
creases in post-fire peak flows ranged between 0 and 14,200 %
(Campbell et al., 1977). In moderate to larger basins (>300 ha) obser-
vations of peak flow increases have ranged from 5 to 850 % (Mahat
et al., 2016; Niemeyer et al., 2020; Scott, 1997; Soulis et al., 2012).
Indeed, much of the variability in both model and empirical results
during the immediate post-fire years is likely related to the temporal
alignment of precipitation intensity, precipitation duration, soil water
content, and soil hydraulic properties (Moody and Martin, 2001;
Thomas et al., 2021). However, in our analysis of post-fire flow drivers,
we focused primarily on long-term climate and landscape conditions, so
effects of these short-scale processes were not considered. Additionally,
in catchments with reservoirs, peak flow responses may be mediated by
water managers decreasing reservoir outflows to reduce the potential for
downstream flooding.

Across the range of precipitation scenarios our model was not always
able to capture post-fire observed peak flows, particularly in the timing
of the peaks (Fig. 4). This was likely because the SWAT model was not
originally designed for predicting wildfire effects and was not able to
capture all of the physical landscape changes that occur with wildfire.
While our fire module was developed to improve existing methods of
representing fire in the SWAT model, more work is needed to refine the
representation of wildfire effects on the physical processes within the
model. For instance, in building the fire simulation we changed the land
use to account for the decrease in ET often observed post-fire. In
catchments burned at high severity, it is reasonable to assume ET rates
will decrease due to the loss of vegetation (Ma et al., 2020). However, in
catchments burned at low to moderate burn severity, ET may remain
unchanged (Poulos et al., 2021) or even increase post-fire due to
compensatory transpiration from the remaining vegetation (Nolan et al.,
2014). Another way to represent post-fire ET changes would have been
to adjust the leaf area index and rooting depth within the model, how-
ever these parameters were found to be insensitive in our models. Lastly,
future studies might consider using more complex runoff representa-
tions like the Green-Ampt equation to more accurately represent infil-
tration excess runoff or SWAT-VSA to more accurately represent the
effects of topographic convergence on runoff processes (Easton et al.,
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2008). Future refinements of hydrologic models to more accurately
represent the effects of wildfire on vegetation and soil characteristics
may provide more accurate post-fire streamflow predictions.

Additionally, we noted poor NSE values for many of the smaller
headwater catchments (Table S1). Fortunately, these were principally
located in unburned catchments, upstream of our area of focus and were
not included in our analysis. The poor model simulations in these
catchments were likely due to the unique and complex hydrologic flow
paths in the catchments in this region—streamflow is often discontin-
uous with substantial groundwater contributions, which are poorly
represented in all hydrologic models.

5. Conclusions

In our study, we modeled two recently burned basins in Oregon to
project the range of effects on streamflow both at the headwater and
downstream scale. Post-fire increases in annual water yields, peaks
flows, and low flows were projected to be greatest in headwater catch-
ments, but more muted at the downstream basin scale. The post-fire
hydrological response was most strongly related to burn severity,
catchment area burned, and annual precipitation. However, catchment
aridity, vegetation type, soil type, and geology were also important
drivers. The influence of a broad range of burn characteristics, catch-
ment characteristics, and climatic factors highlights the substantial un-
certainty that remains regarding the initial hydrologic responses to
wildfire.

As the occurrence of large, high severity wildfires has increased in
many regions across the planet, it is increasingly critical to improve
hydrologic model projections. Post-fire shifts in water quantity and
quality can create substantial and costly challenges for downstream
drinking water treatment and aquatic ecosystem health. Unfortunately,
the majority of hydrologic models were not originally developed to
include the unique impacts of wildfire. As such, we require additional
efforts to continue to improve model projections of post-fire changes in
hydrologic processes. Future research should leverage unfortunate, but
rare, opportunities to quantify post-fire hydrologic responses to provide
improvements to model parameterization and calibration. Empirical
data may also be used to test results in real world conditions, since
modeling is a simplified representation of the real world and cannot
encompass all of the complexities of a landscape.
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