
1.  Introduction
Forested, mountain landscapes in the Pacific Northwest (PNW) region of the USA (Washington, Idaho, 
Oregon, and western Montana) have been changing at an unprecedented rate due to dramatic shifts in 
the regional climate regime (Halofsky et al., 2020; Littell et al., 2010; Seidl et al., 2017; Spies et al., 2010). 
A warmer climate is expected to alter upland forest distributions, structure, and function, with substan-
tial implications for water and carbon cycling (Anderson-Teixeira et al., 2013; Berner et al., 2017; Turner 
et al., 2017). Forest responses to climate change will also be driven by shifts in precipitation regimes, which 
will influence soil water storage and groundwater (Breshears et al., 2005; Harpold et al., 2012, 2015). Chang-
es in climate have already increased the proportion of winter precipitation that falls as rain rather than 
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snow, decreased the spring snow-water equivalent (SWE), and shifted the onset of snowmelt to earlier in 
the spring (Knowles, 2015; Mankin & Diffenbaugh, 2015; Mote et al., 2005, 2018; Safeeq et al., 2016). In the 
PNW, snow cover is especially vulnerable to climate change given that the majority of snow accumulates at 
air temperatures close to 0°C, which can impact precipitation phase (snow or rain) and snowpack ablation 
rates (Jennings et al., 2018; Nolin & Daly, 2006; Safeeq et al., 2016).

With rising temperatures, decreasing snowpacks and continued build-up of forest biomass, conditions for 
wildfires across western U.S. forested uplands have also become increasingly favorable (Abatzoglou & Kold-
en, 2013; Abatzoglou & Williams, 2016; Hanan et al., 2021; Parks & Abatzoglou, 2020; Reilly et al., 2017). 
Wildfire activity has increased substantially across the western United States in recent decades with ev-
idence for larger and more severe fires (Dennison et al., 2014; Holden et al., 2018; Stavros et al., 2014). 
Moreover, wildfire season length has increased by about 25-day across the broader western US (Abatzoglou 
et al., 2020), including a five-fold increase (i.e., 23 days during 1973–1982 to 116 days during 2003–2012) 
in the PNW over the last four decades, which is primarily attributable to warmer temperatures and drier 
conditions in the spring and summer (Westerling, 2016). While wildfire activity has intensified rapidly in 
the past several decades, evidence from longer-term reconstructions of the annual area burned suggests the 
risks associated with high severity wildfire could continue to rise (Murphy et al., 2018). Additionally, long-
term global model projections suggest that fire activity across temperate forest regions of the western U.S. 
is likely to continue increasing under future climate scenarios (Barbero et al., 2015; Flannigan et al., 2013; 
Moritz et al., 2012).

After the occurrence of a wildfire, revegetation over the burned area is critical to maintain or re-establish 
ecosystem functions from forests such as biodiversity, erosion control, water purification, and habitat pro-
vision (Crotteau et al., 2013; Hallema et al., 2018; Robinne et al., 2020; Turner et al., 2013). However, cli-
mate change projections and shifting wildfire regimes have increased concerns about post-fire regeneration 
(Bowman et al., 2020; Halofsky et al., 2020) and, as such it is imperative that we broaden our understanding 
of the role of snowpacks in post-wildfire forest regeneration. This is especially true given that over 80% of 
western U.S. wildfires from 2000 to 2012 occurred within the seasonal snow zone (Gleason et al., 2013) and 
there was a 9% annual increase in burned forest area since 1984 (Gleason et al., 2019). Moreover, Gleason 
et al.  (2019) documented that charred forests in the seasonal snow zone experience a four-times greater 
rate of radiative heating and significantly earlier snowmelt when compared with unburned forests. While 
previous research has shown the critical importance of snow prior to wildfire (Westerling et al., 2006), and 
the impact of charred forests on snowmelt patterns, there has been limited research on relationships be-
tween snow and post-fire revegetation. A number of studies that examined post-fire seedling regeneration 
following the 1988 fires in the Yellowstone region found that climate is a major predictor of seedling estab-
lishment (Hansen & Turner, 2019; Hansen et al., 2016; Kemp et al., 2019) and although they considered 
both temperature and precipitation, they did not specifically examine the role of snow. Little et al. (1994) 
noted that, in the Mount Rainier region, snowpacks lasting into the late spring had a negative relationship 
with post-fire subalpine fir seedling establishment. McIlroy and Shinneman (2020) focused on regeneration 
of aspen stands in moisture limited regions from the Great Basin to Yellowstone. They found that winter 
precipitation, especially snow, was positively correlated with aspen regeneration. In contrast, both Talucci 
et al. (2019) and Werner et al. (2019) identified negative relationships with between snow accumulation 
and conifer seedling recruitment. Vanderhoof et al. (2021) and Vanderhoof and Hawbaker (2018) illustrated 
that snow cover was the main predictor of evergreen versus deciduous post-fire forest regeneration. Howev-
er, none of these studies evaluated both pre- and post-fire snow-vegetation relationships, which are critical 
for understanding how fire and climate change are modifying these fundamental relationships.

Our study builds upon underlying ecohydrological relationships that link snow accumulation to summer 
forest greening. For example, in western U.S. mixed-conifer forests, Molotch et al. (2009) found that pho-
tosynthetic activity was significantly correlated with soil water availability, which is often influenced by 
snowpack accumulation (Barnhart et al., 2020) and snow disappearance date (Harpold et al., 2015; Molotch 
et al., 2009). Littell et al. (2008) also identified post-snowmelt soil water supply as the most important var-
iable controlling growth in northwestern Douglas-fir dominated forests. Similarly, results from a tree-ring 
and snow analysis in the Oregon Cascades suggested that late summer moisture stress in Douglas-fir and 
mountain hemlock was related to snow from the prior winter, in addition to summer vapor pressure deficit 
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(Ratcliff et al., 2018). However, the dependency on moisture availability often diminishes with increasing 
elevation as forests shift to an energy-limited state with snowpacks persisting deeper into the growing sea-
son (Christenson et al., 2008; Goulden & Bales, 2014).

Considering the connections between snow and soil moisture along with the correlation between soil mois-
ture and forest health, it is logical to hypothesize that a transitive relationship exists between snow and 
forest health. Indeed, work by Trujillo et al. (2012) supports this notion, as snow accumulation was shown 
to influence peak summer forest greenness, especially at moderate elevations from 2,000 to 2,600 m. Simi-
larly, common subalpine tree species such as subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea 
engelmannii) have been found to depend on snowmelt water for productivity during the growing season, 
with longer growing seasons (i.e., earlier snow disappearance dates) leading to lower amounts of carbon 
sequestration (Hu et al., 2010). Considering trends of decreasing snowpacks and climate projections in-
dicating warmer winters across much of the western U.S., understanding the influences of snowpack on 
forest productivity will be beneficial as regional climate regimes continue to shift.

As western forests continue to experience elevated rates of wildfire activity, these disturbances have the po-
tential to impact long-term forest health by influencing the snowpack-forest greening relationship and the 
ability of forests to regenerate effectively. Consistent with the known relationship between forest greenness 
and soil moisture in undisturbed forests, high soil moisture has been positively correlated with post-wildfire 
vegetation self-replacement and forest recovery (Johnstone et al., 2010). The re-establishment of vegetation 
in the early years following disturbances is critical to the long-term health of post-fire forest ecosystems 
(Johnstone et al., 2016). Multiple studies have found post-fire seedling recruitment is predictive of future 
forest density (Donato et al., 2016; Stevens-Rumann et al., 2018). Importantly, attainment of sufficient tree 
regeneration is strongly influenced by climatic conditions during the early life stages of newly recruited 
tree seedlings (Enright et al., 2015). Therefore, local climate conditions, such as snow accumulation and 
persistence, may be critical factors in determining the resilience of forests undergoing disturbances with 
increasingly variable climate regimes.

Our study focused on the effects of severe wildfire on the relationship between antecedent snow accumula-
tion and summer greening of vegetation across the Columbia River Basin (CRB) in the northwestern United 
States. Specifically, we addressed the following research questions:

How important is snow cover for post-wildfire revegetation compared with topographic, climatic, and eco-
logical variables?

To what degree is post-wildfire greening correlated with snowpack across varying mountain regions, pre-
fire forest types, and elevation bands across the Pacific Northwest?

2.  Materials and Methods
2.1.  Study Area

The Columbia River Basin (CRB) is the largest watershed in the Pacific Northwest, encompassing over 
670,000 square kilometers (Figure  1). It contains an array of wildfire-prone landscapes (>850 wildfires 
since 2010), while providing source water to millions of people across seven Western US states and critical 
habitat for >700 species, making it a unique and important region to study. Mountainous landscapes con-
stitute much of the CRB, including the Cascades in Oregon and Washington and the Rocky Mountains of 
Idaho and western Montana. Across these four subregions, snow accumulation and snowmelt play a key 
role in the respective ecohydrology, although each site is defined by unique topographical, climatic, and 
ecological conditions. Wildfires have the potential to significantly alter watershed hydrology through more 
variable annual water yields and baseflows, increased peak flows, and altered streamflow timing (Bladon 
et al., 2014; Hallema et al., 2018; Niemeyer et al., 2020).

Within the CRB, where cold, wet winters contrast with warm, dry summers, such seasonality likely can 
magnify these hydrologic regimes. Considering the vast amount of land in the northwestern U.S. experi-
encing shifts in seasonal snowpacks and increased wildfire activity, we used the CRB boundary to provide a 
relevant framing of the post-wildfire snowpack-revegetation relationship. Specifically, we focused on snow 
and post-fire revegetation in the CRB because (a) the region has extensive forests in the seasonal snow zone, 
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(b) Pacific Northwest snowpacks have experienced the greatest declines of any seasonal snow region in the 
western USA, and (c) the extensive CRB land cover change resulting from extensive wildfire has the poten-
tial to significantly alter the hydrology of this important river basin.

Table 1 lists the fires used in this study and their characteristics. The fires located in the Washington Cas-
cades subregion extended in latitude from about 48.0°N to 48.9°N and ranged in elevation from about 400 to 
2,400 m. This subregion includes the headwaters of major tributaries to the Columbia River, including the 
Methow, Chelan, Entiat, and Wenatchee Rivers. The fires were located on the eastern slopes of the Cascade 
Range, where the 30-year normal (1981–2010) annual precipitation decreases with distance east from the 
Cascade crest due to rain shadow effects, ranging from about 1,800 mm in western, higher elevation forests 
to about 500 mm over the eastern, lower elevation forests (PRISM Climate Group, 2019). The most exten-
sively burned forest types across the Washington Cascades were interior Douglas-fir (Pseudotsuga men-
ziesii var. glauca), a mix of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa), and 
whitebark pine (Pinus albicaulis).

Fires across the Oregon Cascades subregion spanned latitudes from 44.1°N to 44.7°N and elevations from 
700 to 2,100 m. Notable drainages near and in the study area include the McKenzie, Santiam, and Deschutes 
Rivers. Like the Washington subregion, all wildfires in the Oregon Cascades occurred along the eastern 
slopes of the range, where average annual precipitation decreases with distance east from the crest of the 
range. Here, the 30-year normal annual precipitation varied from 2,300 mm in the western, higher elevation 
forests to 400 mm in the lower elevation forests (PRISM Climate Group, 2019). Burned forests consisted 
mostly of grand fir (Abies grandis), mountain hemlock (Tsuga mertensiana), and a mix of western hemlock 
(Tsuga heterophylla) and silver fir (Abies amabilis).

Figure 1.  Map of the Columbia River Basin boundary and four subregions of this study: (a) WA Cascades, (b) MT Rockies, (c) OR Cascades, and (d) Central ID.
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Fires in the Idaho Rockies subregion spanned latitudes from 44.3°N to 45.5°N and elevations from 700 to 
2,900 m. Centered in the Sawtooth and Salmon River Ranges, the study area includes lands in the heart of 
the Salmon River sub-watershed, within the greater Snake River basin. Wildfires in this subregion occurred 
across forested landscapes that received 400–1,270 mm of annual precipitation according to the 30-year 
normal (PRISM Climate Group, 2019). Like the Washington Cascades, the burned forest types in the Idaho 
region consisted primarily of Douglas-fir, Engelmann spruce-subalpine fir, and whitebark pine.

Fires in the Western Montana Rockies subregion spanned latitudes ranging from 46.9°N to 48.9°N and ele-
vations from about 1,000 to 2,400 m. The fires in this study area were distributed latitudinally in the primar-
ily north-south oriented Flathead River watershed and occurred mainly in the Lewis Range and Flathead 
Range. Across the Western Montana wildfires, 30-year average annual precipitation varied from about 500 
to 1,800 mm and was largely dependent on elevation (PRISM Climate Group, 2019). In this region, burned 
forests were composed primarily of Douglas-fir and Engelmann spruce-subalpine fir.

2.2.  Data Descriptions

Snow cover characterization was estimated using a new snow cover frequency (SCF) product as described 
in Crumley et al. (2020) and Nolin et al. (2021). SCF was derived from the Moderate Resolution Imaging 

Region Fire name Fire year Size (km2)

%Catchment area in burn severity category

High Moderate Low Unburned

WA Cascades Needles 2003 77 40 19 14 27

Fawn Peak 2003 313 53 17 10 18

Pot Peak 2004 152 25 28 27 21

Spur Peaka 2006 466 42 26 22 8

Tripoda 2006 242 36 24 22 18

Tatoosha 2006 199 47 28 19 6

MT Rockies Bartlett Mountaina 2003 112 32 24 25 15

Blackfoot Lake a 2003 74 26 31 27 16

Little Salmon Cka 2003 134 16 25 37 22

Roberta 2003 221 22 26 29 9

Snowbanka 2003 150 48 20 19 11

Wedge Canyona 2003 210 31 36 25 6

Conger Creek 2007 93 26 31 23 19

OR Cascades B&Ba 2003 369 5 30 46 18

Black Crater 2006 38 20 32 32 16

Biddle Pass 2007 57 25 24 30 20

GW 2007 55 50 22 12 16

Pole Creek 2012 109 30 29 30 11

Waterfalls 2012 51 31 28 31 10

Central ID Rattlesnakea 2007 415 13 16 35 35

Monumental a 2007 1,283 31 17 14 19

Shower Batha 2007 206 33 17 18 31

Halstead 2012 770 22 21 31 20

Mustang 2012 1,528 22 19 27 20

Note. All fires were included in the regression tree component.
aIncluded in the temporal regression component.

Table 1 
List of Fires Included in Regression Analyses, Along With Fire Year, Burn Severity, and Area Burned
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Spectroradiometer (MODIS) snow cover product, which uses daily satellite imagery to identify snow-cov-
ered land at a resolution of 500 m. For each unique pixel, SCF was calculated by dividing the total number 
of snow-covered days by the total number of valid observations over a user-defined timespan. The SCF 
metric has previously been related to SWE (Crumley et al., 2020) based on the assumption that a pixel with 
high SCF likely received higher SWE compared to pixels with low SCF under the same climatic conditions. 
Unlike SWE data from Snow Telemetry (SNOTEL) sites, the SCF data are gridded and spatially consistent 
and contiguous. Nolin et al. (2021) found that MODIS-derived SCF was far more sensitive to differences 
between high, average, and low snow years than SNOTEL-derived SCF. Snow disappearance date (SDD) 
was also considered for this study as a proxy for spring snowmelt timing. However, a preliminary analysis 
showed a much stronger relationship between SCF and greenness compared to the relationship between 
SDD and greenness. SDD had low interannual variability and low (daily) precision whereas SCF ranged 
from 0.00 to 1.00 and had higher precision. Thus, we chose to use only SCF as a snow metric. For this study, 
we calculated SCF annually from January 1 to July 1. For more detailed information on the SCF algorithm 
and its derivation in Google Earth Engine, see Crumley et al. (2020).

Pre- and post-fire forest greenness was measured using the Enhanced Vegetation Index (EVI) MODIS prod-
uct (Huete et al., 2002). EVI is calculated using red, infrared, and blue wavelength bands to estimate canopy 
greenness. EVI is relatively sensitive to physiological differences in vegetation canopy features, such as leaf 
area index, phenology and stress, chlorophyll content, and canopy structure (Huete et al., 2002; Waring 
et al., 2006). As a result, EVI has lower canopy background variation and improved sensitivity over dense 
vegetation compared to other vegetation indices (e.g., NDVI), which has facilitated its use for previous post-
fire vegetation monitoring studies (Lu et al., 2015). We recognize that while EVI is preferred for dense veg-
etation conditions, the NDVI may be more sensitive to biomass changes in the post-fire environment, when 
vegetation is sparse (Lu et al., 2015). However, it was important to be consistent in the vegetation index we 
used, therefore we used EVI for both pre- and post-fire greenness estimates.

We acquired EVI images as 16-day composites at a resolution of 500 m. For each year, we compiled and 
processed EVI composites between June 1 and October 1 to extract the maximum summer EVI value for 
each pixel. The June–October date range was selected to increase the likelihood of capturing the peak pho-
tosynthetic activity across the variety of forest types in the study region.

Wildfire burn severity and burn perimeter data were acquired from the Monitoring Trends in Burn Severity 
(MTBS) project (https://www.mtbs.gov/). MTBS burn severity data are developed from pre-fire and post-fire 
30 m resolution Landsat images optimally selected for peak photosynthetic activity and proximity of dates 
between years. For both pre- and post-fire images, the Normalized Burn Ratio (NBR) (Key & Benson, 2006) 
is calculated using the near infrared (NIR) and shortwave infrared (SWIR) bands as:





NIR SWIRNBR
NIR SWIR (1)

This ratio is an effective metric for measuring burn severity as the NIR wavelength is especially sensitive 
to changes in photosynthetic activity, while SWIR is sensitive to post-wildfire soil condition alterations 
such as shifts in soil water content and presence of ash and charred wood (Miller & Thode, 2007). We used 
NBR to quantify burn severity according to the relativized delta Normalized Burn Ratio (RdNBR) (Miller 
& Thode, 2007). To do this, we differenced the pre- and post-fire NBR images to produce an NBR change 
(dNBR) image. The dNBR image was then relativized using the following formula:


prefire

dNBRRdNBR
NBR

1000
 (2)

The relative nature of this product is rooted in the inclusion of pre-fire NBR, thereby reducing the vege-
tation density bias that exists in the absolute dNBR product (Miller & Thode, 2007). We selected and used 
the RdNBR product since fires were analyzed across varying landscapes and timeframes. RdNBR data were 
resampled to 500-m spatial resolution using ENVI 5.4 software. Pixels were resampled using the pixel ag-
gregate method, which calculates the average of underlying 30-m pixels within each 500-m pixel, weighted 

https://www.mtbs.gov/
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by the fraction of the underlying pixel falling within the 500-m pixel. Along burn perimeters, 500-m pixels 
were only generated when the 30-m data covered the resampled pixel centroid.

To characterize pre-fire species compositions, we used the LANDFIRE Existing Vegetation Type (EVT) data 
set (Rollins, 2009). The EVT data layer combines Landsat imagery, field data, decision tree models, and bi-
ophysical gradient data. We resampled the 30-m EVT categorical data to 500 m using a majority resampling 
method. Because the majority resampling method only used a 9 × 9-pixel window to calculate the majority 
value, we conducted three resampling iterations to achieve a representative 500-m vegetation type layer, 
resampling the original 30-m data to resolutions of 90, 270, and 500 m.

We quantified pre-fire canopy coverage using the LANDFIRE Existing Vegetation Cover (EVC) data set. 
Like the EVT layer, 30-m Landsat imagery is combined with training data to produce a vertically project-
ed percent canopy cover layer for tree, shrub, and herbaceous vegetation types. Original grid cell values 
ranged from 100 (0% tree cover) to 109 (90%–100% tree cover) representing decile ranges of tree cover. We 
reclassified these values as the midpoint of each percentage range to make them more interpretable. For 
example, an original value of 100 (0% tree cover) was reclassified as zero, an original value of 102 (20%–30% 
tree cover) was reclassified as 25, and an original value of 108 (80%–90% tree cover) was reclassified as 85. 
Since this study was concerned with forested land cover, all grid cells containing only herbaceous and shrub 
cover were reclassified to zero before further analysis. Following these reclassifications, the EVC layer was 
resampled to 500 m to match the other data layers by using the pixel aggregate method in ENVI 5.4.

To quantify elevation, we used a digital elevation model (DEM) generated using topographic data from 
NASA's Shuttle Radar Topography Mission (SRTM). The original data were resampled from 30 to 500 m 
to maintain consistency among data layers. The original DEM was also used to generate slope and aspect 
layers, which were then resampled to 500 m to match the MODIS resolution. The aspect layer was reclassi-
fied broadly to indicate the pixel's aspect, with values ranging from 1 (north-facing) to 6 (south-facing) with 
intermediate values indicating either east- or west-facing slopes.

Between the dates of snow disappearance and peak summer greenness, rainfall provides critical additional 
moisture that may be transpired by regenerating vegetation. To provide a quantitative estimate of this input, 
we used PRISM monthly precipitation data at 800-m spatial resolution (Daly et al., 2002; PRISM Climate 
Group, 2019). Summer total precipitation amounts were created by summing the monthly precipitation 
amounts for June, July, and August.

2.3.  Binary Regression Tree Analysis

To determine the degree of importance of several topographic, climatic, and ecological variables to post-
fire revegetation, we constructed a series of binary regression trees for each of the four CRB subregions. 
Tree creation was performed in R using the recursive partitioning (rpart) package (Therneau et al., 2019). 
Regression trees are especially useful when dealing with complex processes involving many interacting 
variables. Past studies have successfully used regression trees to monitor post-disturbance regrowth, al-
though without the inclusion of snow cover variables (Chen et al., 2011; Liu, 2016). Binary regression trees 
use a machine-learning approach to construct a regression model through a series of recursive splits into 
subgroups until no further improvements can be made in the model. Tree construction is initiated by split-
ting the data set into two subgroups using the single variable that most effectively splits the data. From this 
point, each subgroup is partitioned with separately applied iterations, ultimately creating a full regression 
tree with an abundance of terminal groups. The full tree is then pruned back to a level of complexity that 
minimizes the cross-validated error.

While regression trees are often used to create prediction models, we used regression trees to better under-
stand the underlying processes driving post-fire revegetation. In developing the regression tree, the relative 
importance of each independent variable was calculated by summing the goodness of split values each time 
a variable was used for a split. The relative importance measures were then scaled to sum to 100, so they 
could be interpreted as a percentage of influence when building the final regression tree.

To accompany the relative importance values, we also report R2 values for both the complete and pruned 
regression trees. Of interest are the R2 values associated with the appropriately pruned tree, which was 
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trimmed back to the number of splits where the cross-validated error reached a minimum. Without prun-
ing, R2 values would continually increase with each additional split even if the fit of the regression model 
was not improved. Therefore, it is important to only consider the R2 values for the tree size at which point 
any further splitting would not improve the model fitness. To summarize, R2 values reported in the results 
reflect how well the pruned regression tree models fit the datasets.

To determine the relative influence of a suite of environmental variables on post-fire regrowth, regression 
trees were grown and pruned for each of the four CRB mountain regions using the cross-validation pruning 
process. Since the dependent variable of this analysis was post-disturbance revegetation, we only consid-
ered pixels with a 50% decrease in EVI from pre-to post-fire, as revegetation was not expected in pixels 
where a minimal decrease in vegetation density had occurred. We used the dependent variable to estimate 
post-fire revegetation of highly burned pixels using the normalized EVI-based recovery metric, as follows:





post4 post1

recovery
pre1 post1

EVI EVI
EVI

EVI EVI (3)

The EVI recovery variable was quantified by first calculating the difference between EVI at four years and 
one year post-fire, which served as a proxy for post-fire vegetation growth. The four-year post-fire timeframe 
was dictated by the overlap of MODIS data availability (2001–2016) and the final year of high wildfire ac-
tivity within the study area which occurred in 2012. This value was divided by the difference between the 
pre-fire EVI and the one-year post-fire EVI to standardize the growth to reflect revegetation with respect to 
pre-fire conditions. For instance, if the pre-fire EVI was 0.4, the one-year post-fire EVI was 0.2, and the four-
year post-fire EVI was 0.3, the EVI recovery value would be 0.5, indicating 50% revegetation compared with 
pre-fire conditions. While we could not quantify the specific revegetation type, this analytical approach 
provided a useful approximation of vegetation health and vigor across severely burned post-fire landscapes.

We assigned the threshold for vegetation density loss at 50%, thereby only including severely burned pixels 
in the regression tree analysis. Regression trees were grown using lower vegetation loss thresholds (40%, 
30%, and 25%); however, with each respective decrease in threshold, cross-validated R2 values decreased, 
indicating that the selected independent variables were not as well suited to explain revegetation within 
low-to moderately burned forests. Any significant increase in the threshold over 50% would have resulted in 
too few data points (<100) for meaningful regression tree results.

All independent variables were derived and compiled using remotely sensed data (Table 2). Climatic vari-
ables included both snow cover and precipitation-related statistics. The SCF anomaly during the first post-
fire snow season was calculated by subtracting the average SCF over the available data years (2001–2016) 
from the post-1 SCF value. Additionally, over the three immediate post-fire years, the average SCF anomaly 
was calculated to capture longer term snowpack effects. Only three post-fire years were included in this 
variable to complement the dependent variable, which measures peak EVI during the fourth post-fire year.

To capture the effects of non-snow precipitation, the summer (June–August) precipitation anomaly during 
the year immediately following the wildfire was calculated using the 800-m PRISM data. Similar to SCF, this 
variable was constructed by subtracting the average summer precipitation from 2001 to 2016 from the first 
post-fire year summer precipitation. The summer precipitation anomalies for the three years immediately 
following the fire were averaged to create the “post-3” mean summer precipitation anomaly variable.

Topographical explanatory variables considered during tree construction were elevation, slope, and south-
ness. To measure vegetation effects on regrowth, three variables were included. Pre-fire forest cover was 
created from the EVC canopy cover layer. Although we only included high burn severity pixels in regression 
tree construction, burn severity (RdNBR) was also included to capture variability that occurred above the 
burn severity threshold. Additionally, burn severity standard deviation was calculated to approximate dis-
tance to seed source, with the assumption that greater variability in burn severity allows for more effective 
seed dispersal into high severity burn zones. This variable was constructed through two processing steps. 
First, for each 30-m pixel, standard deviation was calculated over an encompassing 16 × 16-pixel neigh-
borhood (480 × 480 m) centered on each respective pixel. The 16 × 16 pixel dimensions were chosen in 
anticipation of the second step, resampling from 30 to 500 m to match the resolution of the accompanying 
variables. Resampling was conducted using the nearest neighbor method, so that in the final image the 
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value of each 500 m pixel indicates the standard deviation of the underlying 16 × 16 window of 30 m burn 
severity data.

2.4.  Temporal Regression Analysis

To measure the degree of correlation between snowpack and forest greening before and after a wildfire, we 
conducted a series of linear regressions spanning pre- and post-fire years for selected wildfires within each 
subregion (Table 1, noted with an asterisk). These fires were selected because they covered large areas and 
the forests experienced moderate to high burn severity. Multiple fires were combined for each subregion 
except for the Oregon Cascades, where the extensive B&B Complex Fire was large enough in area to provide 
a sufficient sample size. As with the regression tree analysis, data were separated by forest types to account 
for varying phenologies and fire-adaptive traits. The same dominant forest types were used from the regres-
sion tree models to maintain consistency between analyses. For each forest type within each of the selected 
wildfires, maximum EVI was plotted versus SCF for the two years preceding each fire and the four years 
following each fire. Regression statistics were not calculated during the disturbance year, as maximum 
summer EVI values were likely unrepresentative if early or mid-summer fires occurred before peak forest 
productivity. The timeframe for this portion of the analysis was dictated by the overlap of MODIS data and 
the occurrence of high wildfire activity across the study area. Complete MODIS data were only available 
from 2001 to 2016, so the number of pre- or post-fire years was limited for some wildfires. For example, one 
of the most active wildfire years was 2003, which only allowed for two years of pre-fire MODIS data.

Since our study was focused on forested landscapes, we only included pixels if the pre-fire forest cover was 
greater than 30%. Data points were further constrained to moderately and highly burned forest by only 
including pixels where summer maximum EVI decreased by at least 25%. The EVI loss metric was used as 
a threshold rather than burn severity (RdNBR) to maintain consistency with the regression tree analysis. 
However, burn severity data were used to inform the 25% EVI loss threshold choice. EVI loss percentage 
was plotted against burn severity values for each subregion to determine the EVI loss value that best rep-
resented the moderate burn severity threshold (RdNBR > 315) recommended by Miller and Thode (2007). 
While the regression tree analysis only included high burn severity pixels, this portion of the analysis was 

Variable Role Units Variable description

Revegetation Dependent Unitless Reflects post-fire revegetation using the 
following formula: (EVIpost4‒EVIpost1)/

(EVIpre1‒EVIpost1)

SCF post-1 anomaly Explanatory Unitless Difference between SCF post-fire year 1 and 
SCF average from 2001 to 2016

SCF post-3 mean anomaly Explanatory Unitless Average SCF anomaly over first 3 post-fire years

Summer precipitation post-1 
anomaly

Explanatory Millimeters Difference between summer (June–August) 
precipitation post-fire year 1 and summer 
precipitation average from 2001 to 2016

Summer precipitation post-3 mean 
anomaly

Explanatory Millimeters Average summer precipitation anomaly over 
first 3 post-fire years

Elevation Explanatory Meters SRTM elevation data

Slope Explanatory Unitless SRTM-derived slope data

Southness Explanatory Unitless Degree of southness ranging from 1 (north-
facing) to 6 (south-facing).

Pre-fire vegetation cover Explanatory Unitless Percentage value reflecting pre-fire canopy 
coverage

RdNBR variability Explanatory Unitless Standard deviation of 16 × 16 grid of 30 m cells 
within each 500 m cell

RdNBR Explanatory Unitless Relativized measure of burn severity

Table 2 
List of Variables and Associated Details Used in the Construction of Regression Trees
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expanded to include moderate burn severity pixels, primarily to include enough data points within each 
forest type for a robust time series of linear regressions. Lastly, within each forest type, data were stratified 
into 200-m elevation bands to quantify the variability in correlations with elevation.

3.  Results
3.1.  Regression Tree Analysis

3.1.1.  Washington Cascades Subregion

For the six wildfires from the Washington Cascades included in our study, we developed regression tree 
models for the three dominant pre-fire forest types, including Douglas-fir, Engelmann spruce/subalpine fir 
mix, and whitebark pine. Overall, our analyses indicated that summer precipitation in the first post-fire year 
was the most influential variable for regenerating vegetation for all three primary forest types, with other 
explanatory variables shifting in importance depending on forest type (Figure 2).

In the lowest elevation Douglas-fir forest type, the regression tree model described the variability in vegeta-
tion regrowth moderately well (R2 = 0.42; p < 0.01). Summer precipitation variables had the highest relative 
importance (RI), describing a combined 34% of the post-fire vegetation regrowth. Snow cover variables 
(RI = 26%) and elevation (RI = 19%) were moderately influential variables. All other independent variables 
had little influence (RI < 10%) on post-fire revegetation.

In the mid-elevation Engelmann spruce/subalpine fir forest type, the model also performed moderately 
well in describing the post-fire vegetation regrowth (R2 = 0.42; p < 0.001). Summer precipitation variables 
were again the most important regression tree variable (RI = 37%). Multiple moderately influential vari-
ables were suggested by the model, including slope (RI = 14%), burn severity (RI = 12%), burn severity 
heterogeneity (RI = 10%), elevation (RI = 10%) and snow cover (RI = 10%). Southness and pre-fire canopy 
cover displayed minimal contributions (RI < 10%) to the regression tree construction.

Among all the vegetation types and regions, the regression tree model for whitebark pine-dominated pixels in 
the Washington Cascades was most effective at describing the variation in post-fire revegetation (R2 = 0.76). 
Snow cover and summer precipitation variables were the four most important factors in constructing the 
regression tree, combining for an RI of 85%. Summer precipitation was again the most influential variable 
with an RI of 48%. Snow cover also contributed significantly to regression tree construction (RI = 38%). All 
other variables were suggested by the model to be minimally influential for post-fire revegetation (RI < 5%).

3.1.2.  Oregon Cascades Subregion

Regression tree models for the Oregon Cascades were grown and pruned for the three dominant pre-fire 
forest types within the perimeters of the six selected fires. Listed from lowest to highest average elevation, 
these species were grand fir, western hemlock/silver fir mosaic, and mountain hemlock. The grand fir mod-
el fit the data quite well (R2 = 0.70). Summer precipitation, snow cover, and topography were all shown to 
be relatively important explanatory variables for post-fire regrowth.

For grand fir-dominated pixels, snow cover was shown to be most important explanatory variable (RI = 35%). 
Summer precipitation (RI = 29%) and slope (16%) were also significant contributors to model construction. 
All other independent variables were shown to have little influence (RI < 10%) on post-fire revegetation.

For pixels where pre-fire forest type was a mosaic of western hemlock and silver fir, the model performed 
moderately well (R2 = 0.32). Summer precipitation, snow cover, and topographic variables were respon-
sible for 100% of the regression tree construction. Summer precipitation variables were shown to be the 
most important regression tree components (RI = 38%), while snow cover variables were nearly as impor-
tant (RI  =  31%). Various moderately influential variables were suggested by the model, including slope 
(RI = 14%), burn severity (RI = 12%), burn severity heterogeneity (RI = 10%), and elevation (RI = 10%). 
All other explanatory variables had RI = 0%, suggesting negligible importance for post-fire re-vegetation.

The regression tree model grown for mountain hemlock-dominated pixels was moderately effective in 
describing the variation in post-fire revegetation (R2  =  0.57). Summer precipitation explained the most 
variance in post-fire regrowth, with a combined RI of 52%. Snow cover (14%) and elevation (12%) were 
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moderately influential explanatory variables. All other variables were minimally influential for post-fire 
revegetation (RI < 10%).

3.1.3.  Central Idaho Rockies Subregion

Regression tree models for the central Idaho Rockies subregion were generated for the three dominant 
pre-fire forest types within the five selected fire perimeters. Listed from lowest to highest average elevation, 
these were Douglas-fir, Engelmann spruce/subalpine fir mix, and whitebark pine. While regression tree 
results are notably different depending on pre-fire forest type, summer precipitation appears to be the most 
important variable on a regional scale (Figure 2).

The Douglas-fir regression tree model described the variability in vegetation regrowth moderately well 
(R2 = 0.43; p < 0.001). The central Idaho Douglas-fir regression tree was the only model for which elevation 

Figure 2.  Regression tree relative importance values for each of the dominant vegetation types in (a) Washington Cascades, (b) Oregon Cascades, (c) central 
Idaho Rockies, and (d) western Montana Rockies. The dominant vegetation types include Douglas-fir, Engelmann spruce/subalpine fir, whitebark pine, and 
mountain hemlock.
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was the most important explanatory variable (RI = 37%). Summer precipitation (RI = 26%), snow cover 
(RI = 14%), and pre-fire canopy cover showed moderate contribution to regression tree construction. All oth-
er independent variables were shown to have relatively little influence (RI < 10%) on post-fire revegetation.

For pixels where pre-fire forest type was mosaic of Engelmann spruce and subalpine fir, the goodness of fit 
was similar to the Douglas-fir model (R2 = 0.39). Summer precipitation was the primary explanatory varia-
ble used to build the regression tree (RI = 61%). Elevation (RI = 18%) and snow cover (RI = 10%) were the 
only other moderately important variables for Engelmann spruce/subalpine fir. All other potential explana-
tory variables displayed minimal importance (RI < 5%) for regression tree construction.

The regression tree model for whitebark pine-dominated pixels in central Idaho was by far the least effective 
at describing the variation in post-fire revegetation (R2 = 0.13; p < 0.01), while the Washington Cascades 
whitebark pine regression tree was the most effective model. Although the low R2 value suggests a weak 
model, the results show similar relationships as the same forest types in the Washington Cascades. Summer 
precipitation was the most influential variable (RI = 51%), while snow cover was also highly influential for 
model construction (RI = 47%). All other variables were suggested by the model to be minimally influential 
for post-fire revegetation (RI < 5%). With such a low R2 value, these results suggest other factors to play 
considerable roles in post-fire revegetation for whitebark pine-dominated land cover.

3.1.4.  Western Montana Rockies Subregion

Regression tree models for the western Montana Rockies subregion were generated for the two dominant 
pre-fire forest types within the five selected fire perimeters. The two primary forest types were Douglas-fir 
at lower elevations and an Engelmann spruce/subalpine fir mix at higher elevations. For both forest types, 
summer precipitation is shown to be the most important variable for post-fire revegetation (Figure 2).

The Douglas-fir regression tree model was not as effective at modeling the data as in other subregions, 
but still provided statistically significant results (R2 = 0.33; p < 0.001). Among all forest types and subre-
gions, summer precipitation was the most important explanatory variable in the western Montana Rockies 
(RI = 86%). The only other noteworthy explanatory variable was elevation (RI = 10%) All other independent 
variables were shown to have low impact (RI < 5%) on post-fire revegetation.

For the Engelmann spruce/subalpine fir forest type, the model goodness of fit was similar to that of Engel-
mann spruce/subalpine fir pixels in other subregions (R2 = 0.39; p < 0.001). Summer precipitation was again 
the dominant explanatory variable used to build the regression tree (RI = 33%). Elevation (RI = 22%), snow 
cover (RI = 19%), and burn severity heterogeneity were moderately influential for the Engelmann spruce/
subalpine fir model. All other potential explanatory variables displayed minimal importance (RI < 10%) for 
regression tree construction.

3.2.  Temporal Regression Analysis

In the following sections we highlight the degree of linear correlation between maximum summer EVI and 
antecedent SCF for two pre-fire years and four post-fire years. Regression statistics were calculated across 
elevation bands for the dominant forest types within each of the four subregions and plotted in the form of 
heatmaps. R values were plotted rather than R2 values to indicate the direction of the linear relationship. 
Each heatmap displays R values from a unique forest type, and rows correspond to elevations bands, indi-
cated by y-axis values. For example, an elevation band labeled as “1,400” contains pixels ranging in eleva-
tion from 1,400 to 1,600 m for the indicated forest type. Fire disturbance year is indicated by the vertical bold 
line between years “pre1” and “post1.”

Since, the objective of this portion of the research was to examine how the strength of linear SCF-EVI re-
lationships shifted following wildfire, exact R values are not displayed on the heatmaps. Relative shifts in 
correlation strength and direction are illustrated by color, with red indicating a positive relationship, blue 
indicating a negative relationship, and darker colors representing stronger correlations. Light-colored cells 
correspond to correlation coefficients close to zero.
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3.2.1.  Washington Cascades Subregion

Overall, correlations between EVI and SCF across the Washington Cascades forest types were weakly to 
moderately positive (Figure 3). Douglas-fir pixels displayed weak correlations at all elevation bands both 
before and after wildfire occurrence (−0.20 ≤ R ≤ 0.20). Engelmann spruce showed positive correlations 
before the fire, especially at the highest elevation band (R = 0.51). Correlations became significantly weaker 
in the first post-fire year at all elevations (R < 0.10). Post-fire correlations were weak across all elevations 
except for the 2,000 m band during the third post-fire year, where a moderately positive correlation was 
observed (R = 0.35).

The whitebark pine forest zone exhibited a similar pattern as Engelmann spruce, with an apparent mod-
erate, positive pre-fire correlation during both pre-fire years. R values were 0.30 for both pre-fire years at 
1,800 m, while R values at 2,000 m were 0.46 during the first pre-fire year and 0.35 and during the second 
pre-fire year. Following fire occurrence, R values generally decreased at both elevations to a weak, positive 
state. Only during the third (R = 0.43) and fourth (R = 0.41) post-fire years did the 1,800 m band return to 
a moderately positive correlation between EVI and SCF.

3.2.2.  Oregon Cascades Subregion

Interestingly, we only observed a strongly negative SCF-EVI relationship in the Oregon Cascades region 
(Figure 4). Before wildfire occurrence, grand fir-dominated pixels showed a moderately negative SCF-EVI 
relationship at all elevation bands, with R values ranging from 0 to −0.28. The immediate post-fire year 
showed no correlation (R < 0.05) between SCF and EVI at all elevations. The second, third and fourth post-
fire years exhibited strong negative correlations at the 1,000 m band, with R values of −0.56, −0.62, and 
−0.55, respectively.

Western hemlock/silver fir-dominated pixels showed moderate, negative correlations between SCF and EVI 
before and after fire occurrence at both elevation bands. During the first pre-fire year, both the 1,200 m 
band (R = −0.46) and the 1400-m band (R = −0.38) displayed moderately negative correlations. Relation-
ships were weak post-fire until the fourth year, when the 1,200 m band (R = −0.38) and the 1,400 m band 
(R = −0.58) once again displayed moderately negative correlations.

Prior to fire occurrence, mountain hemlock-dominated pixels displayed low SCF-EVI correlations across 
both elevation bands. Of the three dominant forest types in the Oregon Cascades, mountain hemlock was 
the only forest type where, we observed a positive post-fire correlation. During the first post-fire year, the 
1,600 m band showed a moderately positive SCF-EVI correlation (R = 0.49). The second and third post-fire 

Figure 3.  Temporal regression results for the Washington Cascades fires for pixels classified pre-wildfire as (a) Douglas-fir, (b) Engelmann spruce/subalpine fir, 
and (c) whitebark pine. Here, and for the similar figures, each row corresponds to a 200 m elevation band, while each column represents a fire-relative year. The 
vertical black line indicates the fire occurrence year, with two pre-fire years to the left and four post-fire years to the right. The R values represent the correlation 
between Enhanced vegetation index and Snow cover frequency .
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years showed weakly positive correlations (R < 0.15), while the fourth post-fire year showed a moderate, 
negative correlation at the 1,400 m band (R = −0.32).

3.2.3.  Central Idaho Rockies Subregion

In the Idaho Rockies subregion, Douglas-fir pixels displayed ambiguous elevational and temporal correla-
tion trends. During the second pre-fire year, correlations were moderately negative at 1,400 m (R = −0.36) 
and 1,600 m (R = −0.32) and moderately positive at 2,000 m (R = 0.34) and 2,200 m (R = 0.42). Moderate 
positive correlations were also observed during the first post-fire year at 1,200 m (R = 0.45) and 2,200 m 
(R = 0.44). Correlations were weak across all elevation bands for the second, third and fourth post-fire years 
(Figure 5).

Engelmann spruce pre-fire pixels showed minimal SCF-EVI correlations at 1,800 and 2,000 m, but showed 
strong, positive post-fire correlations at the 2,200 m band. For the 2,200 m band, the strongest correlation 
occurred during the first post-fire year (R = 0.60) and weakened during the second (R = 0.48) and third 
(R = 0.45) post-fire years. Whitebark pine results showed little correlation at all elevation bands. Only the 
highest elevation band during the first post-fire year showed a moderately positive correlation (R = 0.39).

Figure 4.  Temporal regression results for Oregon Cascades fires for pixels classified pre-wildfire as (a) grand fir, (b) western hemlock/silver fir, and (c) 
whitebark pine. The R values represent the correlation between Enhanced vegetation index and snow cover frequency.

Figure 5.  Temporal regression results for central Idaho Rockies fires for pixels classified pre-wildfire as (a) Douglas-fir, (b) Engelmann spruce/subalpine fir, 
and (c) whitebark pine. The R values represent the correlation between Enhanced vegetation index and snow cover frequency.
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3.2.4.  Western Montana Rockies Subregion

Results for the western Montana Rockies subregion showed remarkably strong and positive SCF-EVI cor-
relations for both dominant forest types across multiple elevation bands (Figure 6). Douglas-fir-dominated 
pixels displayed moderate strength before fire occurrence at all elevations except the lowest band (1,000 m), 
where minimal correlation was observed (R < 0.20). Elevation did not appear to have an influence on pre-
fire correlation strength, as R-values were strongly positive at both the 1,400 m (R = 0.64) and 1,800 m 
(R = 0.66) elevation bands. Post-fire correlation patterns for Douglas-fir pixels were significantly different 
depending on elevation band. At 1,000 m, correlations remained generally weak following fire occurrence. 
The 1,200 m band exhibited a persistent strong, positive relationship for all post-fire years (R ≥ 0.57), reach-
ing a maximum of R = 0.67 during the fourth post-fire year. A similar pattern occurred at the 1,400 m 
band, but to a slightly stronger degree. All post-fire correlations were strong (R ≥ 0.62), with a maximum 
of R = 0.70 during the fourth post-fire year. The two highest elevation bands for Douglas-fir shifted from a 
pre-fire moderately positive correlation to weak post-fire SCF-EVI correlations.

Engelmann spruce displayed correlation magnitudes and post-fire shifts similar to Douglas-fir. At the low-
est elevation of 1,000 m, pre-fire correlations were nearly zero (−0.1 < R < 0.1) and remained weak follow-
ing fire occurrence except for the third year, during which SCF appeared to be positively correlated with 
EVI (R = 0.47). The 1,200 m band showed slightly positive correlations for the two years preceding fire 
occurrence (R = 0.17, 0.24), followed by a post-fire shift towards a stronger SCF-EVI relationship. Corre-
lations reached a maximum during the third post-fire year (R = 0.60) and were moderately strong during 
all other post-fire years. Pre-fire correlations from 1,400 to 2,000 m were consistently moderately positive, 
ranging from R = 0.39 to 0.66. Post-fire correlations were moderately strong between elevations of 1,400 m 
and 1,800 m, with R values ranging from 0.49 to 0.69. At the highest elevation band (2,000 m), correlations 
were once again weakly positive.

4.  Discussion
Both portions of our analysis suggested that post-wildfire revegetation in forested, mountainous landscapes 
is a complex, geographically dependent process. There were considerable differences among all subregions 
and pre-fire forest types for both the variables of importance from the regression tree analysis and the corre-
lation strength from the temporal linear regression analysis. The role of snow cover for influencing post-fire 
revegetation differed within each subregion depending on the dominant pre-fire conifer species. Addition-
ally, for individual species of conifers, the importance of snow cover was dependent on the geographic lo-
cation of the wildfire. Specifically, forests dominated by Douglas-fir or Engelmann spruce displayed varying 
revegetation patterns across the Montana Rockies, Idaho Rockies, and Washington Cascades.

Our regression tree results indicated that summer precipitation variables, followed by snow cover variables, 
had the greatest influence on post-fire revegetation for moderately and highly burned forests. These findings 

Figure 6.  Temporal regression results for western Montana Rockies fires for pixels classified pre-wildfire as (a) Douglas-fir and (b) Engelmann spruce/
subalpine fir.



Journal of Geophysical Research: Biogeosciences

WILSON ET AL.

10.1029/2021JG006465

16 of 21

are consistent with past studies conducted in Mediterranean climates, where precipitation has previously 
been noted as a strong driver of short-term post-fire regeneration (Meng et al., 2015; Röder et al., 2008; Via-
na-Soto et al., 2017). However, we had hypothesized that snow cover would have a stronger influence on for-
est greening due to observations of these linkages in previous studies (Hu et al., 2010; Trujillo et al., 2012). 
Regardless, assessing snow cover and summer precipitation as independent explanatory variables provided 
a more comprehensive and representative modeling of drivers of post-fire revegetation dynamics. We posit 
several explanations for a stronger relationship between forest greening and summer precipitation. One 
explanation may be related to the shallow rooting depths of seedlings, which may be disconnected from 
spring snowmelt, which is often stored in deeper soil layers (Cavender-Bares & Bazzaz,  2000; Williams 
et al., 2009). This explanation is in turn influenced by the geology, soil structure, and saprolite depth un-
derlying the burned area, which will differ depending on region and elevation. Another explanation is the 
timing of precipitation relative to evaporative demand that affects seedling establishment. Post-fire changes 
in soil hydraulic properties can also influence the effects of snowmelt and summer precipitation on vegeta-
tion growth. High burn severity can impact soil physical properties resulting in increased preferential flow 
and deep drainage, which would contribute to a greater proportion of snowmelt or summer precipitation 
bypassing the soil matrix, which would then be unavailable to recovering vegetation (Stoof et al., 2014).

Regardless of their relative importance, both snow cover and summer precipitation variables still displayed 
a predominantly positive influence on vegetation regrowth across forest types and subregions. These cor-
relations were expected, as recent studies have revealed similar relationships between regeneration and 
annual precipitation or wet season precipitation (Harvey et al., 2016; Meng et al., 2015; Stevens-Rumann 
et al., 2018). Elevation also appeared to be a significant driver of revegetation, exhibiting a negative in-
fluence for most forest types, consistent with post-fire forest reproduction patterns in the Sierras and the 
Alaska boreal forest (Johnstone et al., 2010; Van Mantgem et al., 2009). Temporal regression results also 
illustrate an elevational component to the post-fire snow cover-greening relationship, most notably in the 
western Montana Rockies subregions where post-fire correlations were strongest at moderate elevations. 
For continental snowpacks, like the Montana Rockies, SCF may not accurately represent snow water equiv-
alent at higher elevations due to the cold, dry climate that would enable thin snowpacks to persist well into 
the growing season, hence the lower correlations.

Snow cover influences on post-fire revegetation appeared to be most strongly linked in the Oregon and 
Washington Cascades, as suggested by our regression tree results. While the relative importance values 
did not indicate correlation direction, these relationships were likely positive, as post-fire revegetation has 
been shown to be positively related to soil moisture availability (Johnstone et al., 2010; Meng et al., 2015), 
which in turn has been shown to positively correlated with snow accumulation and persistence (Harpold 
& Molotch, 2015; Molotch et al., 2009). We hypothesize that the warmer, maritime snowpacks of the Ore-
gon and Washington Cascades, relative to the colder, continental snowpacks of Montana and Idaho might 
explain this difference. Annual linear regressions suggested a remarkably strong positive relationship be-
tween SCF and peak summer EVI at moderate elevations (1,200–1,600 m) in the western Montana Rockies 
where Douglas-fir and Engelmann spruce-dominated forest stands experienced moderate or high severity 
fire. The mid-elevation Montana Rockies was the only region where a strong, positive correlation persisted 
for all four post-fire years. These results are especially noteworthy for Engelmann spruce-subalpine fir for-
ests, where field studies have shown post-fire drought stress to result in significant declines in seedling 
establishment (Bell et al., 2014; Harvey et al., 2016; Stevens-Rumann et al., 2018). Considering this apparent 
negative relationship between soil moisture availability and seedling density and the negative correlations 
between snow cover and post-fire vegetation density suggested here, such subalpine forests in Montana may 
be at greater risk for delayed post-fire revegetation and decreased forest densities under a warming climate.

An important note regarding these findings is the different interpretations of the two regression analyses. 
Regression tree results illustrated the broader, potentially lagged impact that post-fire snow cover condi-
tions can have on revegetation relative to pre-fire forest conditions, since snow cover variables during the 
first three post-fire years are used to explain the variance in post-fire revegetation four years following 
wildfire occurrence. Compared to the time series of linear regressions, regression tree results are more 
robust against local differences in topography, climate, and pre-fire forest density since the EVI recovery 
metric is relativized to pre-fire conditions and since SCF and summer precipitation variables are presented 
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as anomalies rather than originally observed values. On the other hand, the time series of SCF-EVI linear 
regressions illustrated the immediate influence of snow cover on post-fire greening, measuring an absolute, 
seasonal correlation between snow cover and summer vegetation productivity. While, results are subject 
to local variations in pre-fire forest densities within each subregion, more information is offered regarding 
how correlations shift with elevation before and after fires.

It is worth pointing out that the relatively coarse 500-m spatial resolution of the MODIS EVI and SCF data 
will not be able to capture local variations in pre- and post-fire green biomass and snow cover. Although we 
did not investigate the specific effects of spatial resolution, results may be less accurate over areas of com-
plex topography and mixed pixels. Future results could perhaps be refined with finer scale remote sensing 
data. We note by using EVI as a post-fire greenness metric, we are obtaining information about revegeta-
tion but not forest regeneration. Without lidar vegetation structure information or in situ observations, we 
cannot confirm that the post-fire greenness is the result of regrowing forest. It is also important to note 
that post-fire EVI greenness is likely responding to the full composition of revegetation, including grasses, 
shrubs, and trees (Vanderhoof et al., 2021). While the results of this study may not provide information 
about specific vegetation types in the post-fire period, our findings demonstrate that early seral response is 
affected by snow.

Interestingly, the apparent importance of snow cover for revegetation differed between the two regression 
analyses for some subregions and forest types. Our results from the regression time series suggested snow 
cover had a strong direct influence on post-fire greening in the western Montana Rockies. However, the 
regression tree results did not portray snow cover as an important variable for revegetation, although regres-
sion tree models in Montana explained EVI recovery only moderately well (R2 < 0.40). In contrast, while 
the Oregon and Washington Cascades displayed overall weak correlations from the temporal regression 
analysis, a stronger dependence was suggested by regression tree findings, potentially indicating a lagged 
effect of post-fire moisture conditions on vegetation recovery. The linkage between snow cover and post-
fire greening in Montana has potential implications for post-fire ecosystem transitions or vegetation shifts 
(Davis et al., 2019, 2020; Parks et al., 2019). Frequent and long-duration hydraulic stress induces higher tree 
and seedling mortality and lower elevation forests are more vulnerable due to drier conditions (Simeone 
et al., 2019). Specifically, due to climate change and declining snowpacks, our study supports the growing 
concern that the resilience to fire in some regions and forest types may be increasingly compromised, result-
ing in extensive and enduring areas of altered vegetation (Coop et al., 2020).

From a broader perspective, as wildfire activity continues to increase and intensify in the PNW, understand-
ing the main drivers of revegetation over severely burned forested landscapes is vital for guiding future post-
fire forest management decisions. Results here and from previous studies consistently suggest that drought 
stress during the early post-fire years significantly curbs the resilience of western U.S. montane forests 
(Donato et al., 2016; Enright et al., 2015; Harvey et al., 2016; Van Mantgem et al., 2009). Determining how 
prevalent tree species in geographically distinct subregions respond to a range of post-fire snowpack con-
ditions is especially important for PNW forests, where trends towards earlier spring snowmelt are evident 
(Knowles, 2015; Mote et al., 2018). Additionally, this knowledge may be used to facilitate adaptive post-fire 
management policies and decisions to ensure long-term forest health. For example, depending on the sub-
region and species composition, reseeding efforts following low snow winters might employ more drought 
tolerant species or, replanting could be delayed 1–2 years until snowmelt and soil moisture conditions are 
more favorable for seedling propagation. However, considering trends towards lower frequency of suitable 
climate years and increased frequency of severe fires in the PNW, other approaches may be necessary to 
adapt to this combination of shifts described as the “interval squeeze model,” in which vulnerable tree 
species may be unable to effectively self-replace before the occurrence of another severe wildfire (Enright 
et al., 2015). Across western North America, the combination of climate change and high severity fire is 
already leading to low seedling establishment ponderosa pine and Douglas-fir and models indicate a fur-
ther significant increase in fire-catalyzed ecosystem transitions in montane forested environments (Davis 
et al., 2019, 2020). Where snowpacks have declined, this ecosystem transition is likely to look like a shift 
from forest to non-forest (Sean A. Parks et al., 2019) and more specifically, from evergreen to deciduous veg-
etation (Vanderhoof et al., 2021). Even without a pre-fire understanding of snow-forest linkages, we need 
to understand the drivers and relationships that affect post-fire regrowth in order to assess hydrological 
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impacts (Robinne et al., 2020), especially in areas of high burn severity where runoff, soil erosion and “black 
water” runoff can negatively affect peak flows, sediment transport, and water quality (Bladon et al., 2014).

The positive relationship between snow cover and regenerating vegetation suggested here, along with past 
field studies of post-fire seedling densities indicate a potential shift toward decreased forest densities fol-
lowing severe wildfires (Harvey et al., 2016; Stevens-Rumann et al., 2018). Fire-intolerant and drought-in-
tolerant species inhabiting large swaths of montane and subalpine landscapes, such as Engelmann spruce, 
subalpine fir, western hemlock, and silver fir appear to be the most vulnerable to a diminishing snow-
pack. Shifts in species compositions of northwestern forests have been shown to be a legitimate possibility 
stemming from post-fire moisture stress and increased fire frequency (Bell et al., 2014; Donato et al., 2016; 
Stevens-Rumann et  al.,  2018). When severe wildfires are followed by low snowpacks, early snowmelt 
or low summer precipitation, drought stress intensifies and provides an opportunistic window for more 
drought-tolerant species (e.g., lodgepole pine, whitebark pine) to establish. Increasing fires and declining 
snowpacks can also lead to an expansion of low elevation invasive species in montane regions (Stevens & 
Latimer, 2015). Post-fire soil moisture deficiency may even lead to a successional transition from conifer to 
deciduous tree compositions (Johnstone et al., 2010).

These findings do not imply inherently beneficial or detrimental post-fire vegetation trends. With shifting 
climate trends in the PNW, migration of vegetation types and accompanying fire regimes may be the most 
adaptive path forward for forested landscapes. Fires can be viewed as an opportunity for forests to re-organ-
ize into ecosystems better structured to survive warmer winters, longer fire seasons, and greater drought 
stress. One of the major challenges moving forward is how to reconcile ecological forces of a changing 
climate with goals of ongoing post-fire management practices, where are often oriented towards re-estab-
lishing forests as they existed pre-disturbance.

5.  Conclusions
As climate change continues to impact area burned, burn severity, and precipitation regimes, it is increas-
ingly critical to understand the dominant drivers of post-fire vegetation recovery. Our research suggests that 
snow cover has a strong influence on post-fire vegetation greening. However, the effect varied depending on 
subregion and dominant pre-fire conifer species, with the most notable impacts at low to moderate eleva-
tions in the Washington Cascades, Oregon Cascades, and western Montana Rockies. Additionally, positive 
relationships between snow cover and summer precipitation with post-fire greening suggest that active 
post-fire revegetation efforts will help facilitate recovery, especially during years when severe wildfires are 
followed by early snowmelt years or below average summer precipitation. Given the current projections for 
climate change, the role of snowpacks in affecting post-fire vegetation recovery will become increasingly 
important in the Western US. As such, we advocate for similar studies in the future—perhaps, supported 
and validated with field research—to enable post-fire management and policy decisions that will promote 
healthy and resilient forests.
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